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Program Objective

To design and build coupled solid state lasers and arrays and develop models to understand and
predict coherence and synchronization properties of the light emitted. Also the study of coupled
waves in optical fibers, their nonlinear interactions, transport of polarized light.

Significant Results During Last Year
L. Dynamics of Coupled Lasers

Our experimental, numerical and analytic results on the dynamics of two coupled lasers were
published in Physical Review E in April [1]. A novel result demonstrated was the possibility of
phase synchronization of the lasers even though the amplitudes of the laser fields are unstable
and chaotic. Stochastic fluctuations of the detuning between the lasers were accounted for in
simulations to reproduce the characteristics of the intensity time traces measured.

A new set of experiments on a linear array of three lasers was initiated. We find the remarkable
result that the outer two lasers may be beautifully synchronized with each other though the
middle laser is not. We are investigating this phenomenon in the light of recent work on
generalized synchronization of nonlinear oscillators [2]. An illustration of the phenomenon is
being sent by mail.

Extensive simulations of the correlations of the intensity fluctuation of a nine laser array have
been done this past year, and a paper is in preparation, to be submitted to Physical Review E [3].
The conclusion from experimental observations and numerical computations is that the spatial
correlations of intensity correlations for the elements of the array can decay sharply or very
slowly depending on the coupling strength of the lasers.

II. I'I l . D . . Q . ] E.]

"We are about to submit a paper to Physical Review E on an extensive study of nonlinear wave
propagation in a single mode optical fiber [4]. It is shown that the evolution of new sidebands in
the fiber due to four wave mixing can be significantly affected by phase fluctuations along the
fiber length, as well as by fine spectral structure of the - 'mp waves.

Two papers were published in Physics Letters A [5,6], that developed a stochastic version of the
Ikeda model. Two papers, one in Optics Letters [7] and one in Physical Review A [8], reported
the results of extensive measurements of the polarization dynamics of the laser intensity on
nanosecond time scales. A new laser model based on the Ikeda equations was developed and
used to explain the formation of sharp pulses, irregular chaotic dynamics, as well as the
formation of square waves in this system. These experiments and the corresponding models
open a new regime for the investigation of fiber laser dynamics and future applications.
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Chaos and coherence in coupled lasers.

K. S. Thomburg, Jr., M. Méller,* and Rajarshi Roy
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

T. W. Carr,’! R.-D. Li,* and T. Emeux
Université Libre de Bruxelles, Optique Nonlinéaire Théorique, Campus Plaine, C.P. 231, 1050 Bruxelles, Belgium
(Received 5 August 1996)

A fundamental chaotic instability in a system of two coupled lasers is investigated both experimentally and
theoretically. The amplitude instability and mutual coherence of the light emitted by the lasers is investigated
as a function of the detuning and coupling parameters. A quantitative comparison of the intensity fluctuations
is made with numerical simulations that include noise in the laser detuning. [$1063-651X(97)03904-4]

PACS number(s): 05.45.+b, 42.50.Lc, 42.55.Rz

Haken's seminal analogy between fluid dynamics and la-
ser instabilities initiated extensive studies of the Lorenz-like
chaotic dynamics of the single mode far-infrared ammonia
laser over the last two decades [1,2]. While this is conceptu-
ally the simplest chaotic laser system, it is also of great fun-
damental interest that two single-mode lasers that are stable
individually can exhibit a chaotic instability when coupled
[3.4]. Such a system provides a beautiful illustration of the
rich and complex dynamical behavior of two coupled non-
linear oscillators. Pairs of neurons [5], pacemaker cells [6],
chemical oscillators [7], and Josephson junctions [8] provide
other examples of coupled nonlinear oscillator systems. It
has been theoretically recognized that the amplitudes of the
coupled oscillators can display a rich variety of unstable be-
haviors for certain regimes of coupling strength [9]. How-
ever, there are no experiments on physical systems that have
quantitatively probed the relationship between the chaotic
amplitude instability and phase coherence of coupled nonlin-
ear oscillators. In this paper we report the results of precise
measurements of the amplitude dynamics and phase coher-
ence of coupled lasers and make quantitative comparisons
with numerical models.

Many studies of coupled lasers have been motivated by
the need for high power coherent sources. Coupled semicon-
ductor, solid state, and CO, lasers have been studied [4,10-
12], but it is the spatial properties of the output radiation that
have received the most attention, rather than the dynamical
characteristics of the emitted light {13]. Here, we study the
chaotic dynamics and mutual coherence [14] of two coupled
single-mode Nd:YAG (neodymium doped yttrium aluminum
gamet) lasers that are detuned from each other by a very
small amount (roughly 1 part in 10® of the oscillator fre-
quency) and for which we can vary the coupling strength
over many orders of magnitude.

*Permanent address: Westfalische Wilhelms-Universitat, Institut
fiir Angewandte Physik, Corrensstrasse 2/4, 48149 Munster, Ger-
many.

*Present address: Naval Research Lab, Code 6700. 3, Special
Project in Nonlinear Science, Washington, D.C. 20375-5000.

*Present address: HGM Medical Lasers Inc., 3959 West 1820
South. Salt Lake City, UT 84104.
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The following equations describe the time evolution of
the complex, slowly varying electric field E and gain G of a
pair of spatially coupled, single transverse and longitudinal
mode class B lasers [15,16]

dEl -1 .

T=Tc [(Gl—Q)El‘KE2]+l(I)1E1y (la)
aG, _, 2

dE, _, .

_d_t.._—_»;-c [(Gy—ay)E;—kE | ]tiw,E;, (1c)
dG,  _
-Zt—=7f I(Pz‘Gz‘GZ|EZi2)' (1d)

In these equations, 7. is the cavity round trip time
(~450 ps for a cavity of length of 6 cm), 7, is the fluores-
o e time of the upper lasing level of the Nd** ion

i s for the 1064 nm transition), p, and p, are the pump
.. .:ficients, @, and a, are the cavity loss coefficients. and
w, and w, (angular frequencies) are the detunings of the
lasers from a common cavity- mode, respectively. The lasers
are coupled linearly to each other with strength «, assumed
to be small, and the sign of the coupling terms is chosen to
account for the observed stale phase-locked state in which
the lasers have a phase difference of 180°. For laser beams
of Gaussian intensity profile and 1/e2 beam radius r the cou-
pling strength, as determined from the overlap integral of the
two fields, is defined as x=exp(—d?/2r*). Control param-
eters are the frequency detuning of the lasers (Aw
'=w,— w;) and the coupling coefficient «.

The dependence of the system dynamics on parameters
can be numerically investigated by integrating Eqgs. (1) using
different values of x and A w. Figure 1 displays the predicted
amplitude instability of the two lasers and its relationship to
the coherence of the laser light as a function of both the laser
separation d and the detuning Aw. The height of the graph
shows the largest intensity value of laser 1 recorded during
the 5 ms integration time. The color coding shows the degree
of mutual coherence between the two lasers, as measured by

3865 " © 1997 The American Physical Society
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FIG. 1. (Color). Numerically computed parameter space plot of the amplitude instability of two lasers as a function of both the separation
d and detuning Aw. Here p; =0.053, p,=0.051, a;=a,=0.04, and r=225 um. We use pump parameters that differ by a few percent in
the simulation to account for the fact that the two lasers may be nonidentical in the experiment. The height of the graph indicates the largest
intensity value recorded at a given value of separation and detuning, while the color of the graph denotes the degree of mutual coherence
between the two lasers, as indicated by the fringe visibility. Blue colors indicate low visibilities, while red colors indicate isibilities

approaching unity, as shown in the legend.

the fringe visibility. The visibility V of the fringe pattern
formed by the small angle interference of the laser beams is
defined as V= (a0 Imin)/ (I max + I i) Where Iy, and [
are adjacent maxima and minima in the fringe profile. The
fringe visibility is directly proportional to the absolute value
of the complex degree of mutual coherence [14} Low vis-
ibilities, shown as blue colors in this figure, indicate states of
low mutual coherence, while reds indicate visibilities ap-
proaching one and therefore high degrees of mutual coher-
ence. One can clearly see from Fig. | that the area where the
intensity instabilities exist occurs just before the onset of
phase locking and that significant intensity oscillations ap-
pear only around a rather narrow band of detuning values
between 10° and 10° s™'. A single positive Lyapunov ex-
ponent was computed in this regime with a typical value of

~10* s~!, demonstrating the chaotic nature of the inxtabil-
ity.

Insight into the amplitude instability can be obtained by
considering the special case of identical laser parameters and
by assuming that the two laser amplitudes and gains are
identical. Equations (1) then reduce to

d€

Z:f:l[G—Q—KCOS(q))]gv
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FIG. 2. Experimental system for generating two laterally
coupled lasers in a Nd:YAG crystal and observing the amplitude
instability. RP is a rectangular prism; translating this device
changes the pump beam separation, and thus the infrared beam
separation. The Nd:YAG crystal is coated for high reflectivity (HR)
on one side and antireflection coated (AR) on the other. The output
coupler (OC) is 2% transmissive; both mirrors at flat. FPI is a
scanning Fabry-Pérot interferometer, and as used to measure the
mode spectrum of both lasers.

do

27=2r;‘xsin(cp)+Am (2¢)

for the laser amplitudes |E,|=|E,|=¢, gains G,=G,=G
and phase difference ® = ¢, — ¢,, where @, is the phase of
the field E;.

Equations (2a)-(2c) are the rate equations describing a
single mode class B laser with variable losses. The phase
equation can be integrated exactly, and ®(r) is an un-
bounded function of time if the detuning |Aw| exceeds a
critical detuning Aw,, where

Aw.=2x7]". 3

This is the critical condition for an amplitude instability
[4); we also note that the lasers are phase locked for detun-
ings smaller than Aw, [16]. If condition (3) is obeyed, then
the laser equations (2a) and (2b) are periodically modulated
by the cos[®(r)] term. The frequency of these modulations is
given by

Wy = \/sz—-AwZ. 4)

On the otlier hand, it is known that the laser relaxation os-
cillation frequency wg (=2wg) for small 7./7; and k=0
is given by

2(p— 2
=(_<Lﬁ) , )

Wp=
R TL.T!

This implies the possibility of subharmonic resonance if
the ratio of w,, to wp is close to an integer. These resonances
then produce branches of subharmonic solutions which ex-
plain the destabilization of the laser system [17,18].

We have tested the prediction of the amplitude instability
with the experimental system of Fig. 2, which consists of
two parallel. laterally separated lasers created by pumping a

single Nd:YAG rod of -5 mm length and diameter in a plane
parallel cavity. The pump beams are generated from the ar-
gon ion laser output (A=514.5 nm) by a system of beam
splitters and prisms that ensure parallel propagation at an
adjustable separation symmetric with respect to the YAG rod
axis. The optical cavity consists of one high reflection coated
end face of the rod and of an external planar output coupler
with 2% transmittance. A Brewster plate and thick etalon
within the cavity ensure linear polarization and single longi-
tudinal mode operation. The lasers were operated at approxi-
mately 33% above threshold pump power. For these param-
eters, the relaxation oscillation frequency, vy, is of the order
of 100 kHz. The frequency detuning between the two lasers
can be adjusted by tilting the output coupler slightly, thereby
introducing a minute difference in cavity lengths.

Thermal lensing induced in the YAG crystal by the pump
beams of waist radius ~20 um is responsible for generating
two stable, separate cavities [16]. The TEM ( infrared laser
beams have radii (at 1/e? of the maximum intensity of the
Gaussian profile) of r~200 um and their overlap may be
continuously changed by varying the lateral separation J of
the pump beams over a range of 0.5 mm-3 mm. The pump
beam separation and profiles are measured directly by a ro-
tating slit technique. In this range, there is no appreciable
overlap of the pump beams and coupling is entirely due to
the spatial overlap of the infrared laser fields.

The individual output intensity time series are recorded
with fast photodetectors and a two channel digital oscillo-
scope. The optical frequency difference of the lasers is mea-
sured with a radio frequency spectrum analyzer after com-
bining the two beams on a photodetector. A scanning Fabry-
Pérot interferometer was used to ensure that both lasers
oscillated only on a single longitudinal mode.

The change of dynamical behavior of the detuned,
cc - '=d system can be seen as the separation of the pump
b: s is varied. For a large separation (d=1.20 mmj the
las.rs were stable and incoherent. The visibility of the
fringes was low (V=0), and the heterodyne single was mea-
sured to be between 30 and 40 MHz. For a small sepuration
(d<0.8 mm), the lasers are stable and phase locked. The
fringe visibility was high (V~1), and the heterodyne vignal
was absent since the lasers were frequency locked. Figure
3(a) shows a typical intensity time trace characteristic of the
unstable regime. Large bursts of the intensity occur. sepa-
rated by quiescent periods. Here the lasers were separated by
1.03 mm, which implies x~2.0X 1073, Using Eq. (3). we
find that the condition for an amplitude instability requires
|Aw|>10° s~!, which is verified in our expenments
(Aw=~1 MHz). The intermediate visibility of V=0.20 .igni-
fies the onset of phase locking. The experimentally measured
visibilities are in excellent agreement we the numencally
computed values represented in Fig. 1.

In the experiment, a substantial amount of fluctuation in
the detuning between the two lasers was observed: the beat
signal frequency in the unstable regime fluctuated between 0
and 10 MHz. In order to obtain quantitative comparison be-
tween measured intensity time series and simulations. we
numerically investigated the behavior of Egs. (1) with a sto-
chastic detuning term, such that Aw(f)=w,—w;. where
w;= wg,;+ dw;(1). Here dw,(1) is a colored noise term of
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FIG. 3. Intensity time traces of (a) experiment and (b) numerical
simulation. The time trace in (a) was measured at a pump separation
of d=1.03 mm, and illustrates the bursting nature of the amplitude
instability. The average interspike interval (ISI) is 1.9 ms, the nor-
malized standard deviation o;/1=0.10, and the standard deviation
of the detuning oy, ~10% s~'. (b) The numerically computed time
trace of the intensity of laser 1 with an exponentially correlated,
stochastic detuning term of strength D=5X10° s~' and correla-
tion time A~'=3 ms. The mean detuning Aw,=5%10°s"!, and
the standard deviation of the detuning oy, =1.4X 10%s™". The av-
erage ISI was 1.7 ms, and o, /T=0.12. The cavity losses were taken
to be 4% and the lasers were pumped one-third above threshold,
with a 0.5% asymmetry.

strength D and correlation time A~!, with the properties
(Swi(1))=0 and {dw,(1)dw;(t+At))=&;;D\ exp(—\|At))
[19].

We used three different statistical measures to compare
the numerically simulated and experimental traces—the nor-
malized standard deviation of the intensity o; /1, the average
interspike interval (ISI), and the standard deviation of the
detuning o, . The average ISI is determined by measuring

-

THORNBURG, MOLLER, ROY, CARR, LI, AND ERNEUX ' s

the average time between adjacent bursts whose intensities
are greater than some threshold, here defined to be 1.2 times
the average intensity. To avoid counting the same burst
twice, a *‘quiescence time’’ 7, of 0.8 ms was used such that
a new spike would be detected no sooner than 7,. The stan-
dard deviation of the detuning in the experiments was mea-
sured to _be on the order of 10 MHz or less; numerically.
Cru= VvDX. Using these statistical measures, the parameters
D and N were adjusted to give quantitative agreement be-
tween the observed experimental resuits and the numerical
simulations. The range of parameters D and A that gave
quantitative agreement with experiment is very limited:
D~0(10° s™!) and A~'~0(1073 5). Figure 3(b) shows a
good match with the experimental data.

In conclusion, we have demonstrated a fundamental am-
plitude instability of two coupled lasers and its relationship
to the mutual coherence of the total field. Theoretical and
numerical predictions, using a dynamical model, of the range
of coupling strengths where the instability is expected to
occur agree very well with experimental observations. For
large separations, both the model and experiment reveal
stable intensities and no appreciable coherence. As the sepa-
ration is decreased to just above the phase-locking point,
large amplitude fluctuations are observed, in agreement with
numerical predictions. The laser fields exhibit a low degree
of mutual coherence for this range of coupling strength. It
was necessary to include stochastic detuning fluctuations to
achieve quantitative agreement between experimental and
simulation in the unstable regime. Finally, for even smaller
separations, phase locking is achieved. The lasers are now
found to be stable, mutually coherent, and frequency locked.
These studies are directly relevant to the design of laser ar-
rays; they also reveal a rich and complex dynamical scenario
which skould be systematically explored in the future for a
variety of different oscillator systems.
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Fast polarization dynamics of an erbium-dope('l'ﬁber ring laser

Quinton L. Williams and Rajarshi Roy
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Received May 3, 1996

The polarization dynamics of a unidirectional erbium-doped fiber ring laser has been observed for individual
round trips in the cavity. A rich variety of dynamic states, including square-wave pulses and irregular
temporal patterns, was observed as operating parameters were changed. A model with coupled delay and

differential equations is used to interpret the dynamics.

Rare-earth-doped silica fiber lasers have recently re-
ceived much attention in the context of long-time-scale
polarization resolved dynamics. Phenomena such as
antiphase dynamics in orthogonal polarization states,'
self-pulsing,? and polarization switching induced by
optical feedback® have been reported. Experimental
evidence of the quasi-periodic route to chaos in an
erbium-doped fiber laser has been published.* The
previous reports were done on the millisecond time
scale, which corresponds to the relaxation oscillation
frequency of the fiber laser.

We present some measurements of the fast temporal
(on the nanosecond time scale) dynamics of the Er®*-
doped fiber ring laser (EDFRL). The fiber laser out-
put beam contains two linearly polarized components.
It is within the two groups of orthogonal polarization
eigenmodes that the various dynamic states are ob-
served and investigated. Computational results from
a model based on coupled delay and differential equa-
tions of the Ikeda type® provide an explanation of the
experimental observations. A similar model was de-
veloped by Loh and Tang® for polarization dynamics of
an external-cavity semiconductor laser.

The EDFRL presents a unique opportunity for the
study of laser nonlinear dynamics. The small longi-
tudinal mode spacing and large gain bandwidth make
the EDFRL a practical experimental system in which
the collective behavior of a large number of globally
coupled nonlinear oscillators can be observed. Such
models have been studied in the context of physical and
biological systems by Strogatz and co-workers’ and by
many others recently.

A schematic of the experimental configuration is
shown in Fig. 1. The coherent pump source was the
514.5-nm-wavelength line from an argon-ion laser. A
6-m length of erbium-doped fiber with an ion con-
centration of ~240 parts in 10° was taken as the
gain medium. A Faraday optical isolator was included
in the laser cavity to ensure unidirectional opera-
tion. An output coupler removed 3% of the intra-
cavity power. The polarization controller functioned
as a discrete birefringence-inducing element. Overall,
the laser cavity was 20 m long, 14 m being passive op-
tical fiber. Free ends of the couplers were placed in
index-matching fluid to suppress the small, but para-
sitic, Fresnel reflections. The output at A = 1.561 um
was sent through a A/2 wave plate and a polariza-
tion beam splitter cube, where the orthogonal polari-

0146-9592/96/181478-03$10.00/0
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zation eigenmodes could be observed simultaneously
with high-speed photodetectors. Data were recorded
by a fast digital oscilloscope with a 1-GHz sample rate.
The round-trip time for the cavity was ~100 ns, and it
was possible to store 100 data points per round trip.

The EDFRL lases on a broad 3-dB optical gain
bandwidth that is ~101° Hz. The longitudinal mode
separation is 9.8 MHz; the number of active oscillating
modes is well over 2000. An optical spectrum analyzer
reveals that the modes oscillate within orthogonaily
polarized mode groups that have been modeled as two
supermodes.!

While the EDFRL was pumped well above thresh-
old (the threshold pump power was ~175 mW), self-
pulsing was observed on the nanosecond time scale.
Figures 2(a) and 2(b) are resolved polarization com-
ponents of the total output intensity. In Fig. 2(a) the
distinct sharp pulses are separated by the fundamental
cavity round-trip time of ~100 ns. Figure 2(b) shows
a highly complex time serien that is quasi-periodic or
nearly perfectly repeating, with a period of ~7 cavity
round trips. Inspection of the irregular waveforms in
Fig. 2(- :hows that these patterns repeat for several
hundr: avity round trips before eventually evolving
into oti.cr irregular waveforms. At the higher pump

Fig. 1.

Experimental arrangement:
514.5 nm; 514.4—1550 nm wavelength division multiplexer
optical coupler; Faraday optical isolator (not shown), 97/3
coupling ratio output coupler; neutral density (ND) fil-
ter with 10% transmission at 1.55 um; A/2 wave plate
at 1.55 um; DETs, fast-response InGaAs/p-i-n photo-
detectors.

Ar*-ion laser, A, =

© 1996 Optical Society of America
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Fig. 2. Experimentally measured polarization resolved
traces of (a) self-pulsing at the cavity round-trip time in
the x-polarization direction from an EDFRL with 10%
output coupling, (b) irregular trace in the y-polarization
direction. The EDFRL was pumped four times threshold.
(c), (d) Antiphase square pulses in the x- and y-polarization
directions, respectively, from an EDFRL with 3% output
coupling. The EDFRL was pumped at 3.3 times threshold.

levels (three to four times above threshold), antiphase
square pulses were formed in the orthogonal polariza-
tion intensities for a narrow range of adjustment of
the polarization controller. Figure 2(¢c) shows 30-ns
pulses. This corresponds to the 6-m length of the gain
medium. Figure 2(d) shows 70-ns pulses that corre-
spond to the 14-m length of the passive fiber within
the laser cavity. Another detail to note is the highly
structured intensity fluctuations that ride on top of the
square pulses and repeat over many round trips.

A laser model based on an Ikeda-type set of delay-
differential equations was used to investigate the
dynamical behavior of the EDFRL. - Loh and Tang
derived a set of difference-differential equations to
study ultrahigh-frequency polarization self-modulation
in semiconductor lasers.® It is in the same spirit that
we derive our set of equations from the Maxwell-Bloch
equations; they take the form
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Sy(2) = %'Z‘(Sl(t = 7r) exp{2A,[W(£)]}(1 + cos &)
+ Sa(t — 7r) exp{2A2[W(t)]} (1 — cos ¢)
= 2[Si(t - TR)Sa(t — 78)]**
X exp{Ai[W(e)] + Ay[W(D)]}
X sin{«x[W(t)]} sin ¢), (D

52 = B (81t ~ ma) expl2A WO} 1 - cos o)
+ So(t = 7r) exp{2A[W ()]} (1 + cos &)
+ 2[S1(¢ - TR)S2(t — 7R)]V2
X exp{Ai[W(8)] + Ax[W()]}
X sin{«[W(¢)]} sin ¢), (2)

dW(t)
de¢

= P — y[Wr + W(t)] — Si(t — r)
X (exp{ai[W(t) — NoL]} - 1)
— Syt — 7r) (exp{a(W(¢) = NoL]} - 1), (3)

where W() = f(l,‘ N(z,t + z/vp)dz, «[W()] =
qi[W(t)] — q2[W()] — B, S1.2(t — 7r) = |Ey 2(t — TR)I?/
kw2, A1 2AW(t)] = (a1,2/2) [W(t) — NoL], q12[W(t)] =
ayo(ay,2/2)[W(t) — W(t = 0)], and ¢ is the relative
phase difference between the polarized fields. The
mode detuning factor is defined as a, = -\, y_,
where A, = wm — wgandm = 1,2. Other parameters
are defined in Table 1.

In this model the gain is taken to be a 'inear function
of the population inversion. S; and S; are the photon
number densities for the x- and y-polarization modes.
respectively, and W represents the inversion. The
differential equation was integrated with a fourth-
order Runge-Kutta routine with a 1-ns integration
time step, corresponding to the experimental sampling
time for observation of laser dynamics in a single cavity
round trip.

In Egs. (1)-(3) the lumped parameter g is due to the
phase shift associated with fiber birefringence over the

Table 1. Parameter Values Used in the Numerical Simulations
Parameter Value Unit Definition
Ry, 0.97 - Return coefficient
Ly - 20 m Total cavity length
L 6 m Length of active fiber
Nr 10% m~3 Ion concentration
No 102 m-3 Transparency inversion
TR 10-7 s Cavity round-trip time
Y. 4.75 x 10 s~! Polarization decay rate
7 102 s7! Population decay rate
Ao 1.530 x 10-¢ m Resonance wavelength
A 1.561 x 10-¢ m Wavelength of mode 1
o, 7.5 x 10-% m? Emission cross section
a2 2.03 x 102 m? Mode 1, 2 gain factor
ay 3.52 x 102 - Mode 1, 2 detuning factor
P 1.44 x 10?8 m2s! Pump term
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Numerical Results
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Fig. 3. Numerical simulations of time -traces showing
self-pulsing at the cavity round-trip time in (a) the
x-polarization direction, (b) the y-polarization direc-
tion. (c), (d) Antiphase square-wave pulses in the x-
and y-polarization directions corresponding to those of
Figs. 2(c}-2(d). Parameters for (a) and (b): ¢, = 0.027,
¢p = 7 - 0.175, B = 1.5 X 1073, and AA = 0.125 fm.
Parameters for (¢) and (d): ¢4 = 0.027, ¢p = = — 0.015,
B =10"2, and A\ = 4.09 fm. The pump rate is 3.2 times
threshold.

entire cavity. By changing the polarization controller,
one introduces a local birefringence by applying stress
to the fiber, which appears as a discrete phase shift
in the section of passive fiber. We take the phase
term ¢ to be ¢4 in the active region and ¢p in the
passive region that contains the polarization controller.
The value of ¢4 was taken to be small but nonzero.
The small phase shift in the active fiber could be a
result of the active fiber’s being wound onto a spool.
This feature of separate phases in the active and
passive fiber portions is necessary for reproducing
the observed asymmetric nature of the square-wave
pulsations. ¢p was taken to be approximately 7 rad
because the polarization controller functions roughly
as a A/2 wave plate. The birefringence causes the two
mode groups to travel at different speeds, ultimately
resulting in a mode group detuning AA = (A2 — Ay).
Typical results from the numerical model showing
output intensities in orthogonal polarization directions
are displayed in Fig. 3. Table 1 gives values for the
physical parameters of the system. These parameters
yield a good match between theory and experiment,
as seen from Figs. 2 and 3. However, these computa-
tions are merely representative of the large variety of
waveforms that emerges for different parameter
values; they are not meant to provide a detailed
reproduction of the experimental waveforms. The
sharp pulses are seen to be distinctly separated by
the fundamental cavity round-trip time of 100 ns
in Figs. 3(a) and 3(b). One sees that the irregular
waveforms actually repeat over single cavity round

OPTICS LETTERS / Vol. 21, No. 18 / September 15, 1996

trips for the parameters chosen. Figures 3(c) and
3(d) show antiphase square-wave pulses that form
when the parameter value settings of ¢4, ép, 8, and
A A are in the proper regime.

Essential experimental features captured by the
model are the following: (1) the dynamics occur on
the nanosecond time scale, (2) self-pulsing at the
cavity round-trip time or multiples with repeating
irregular waveforms is present, (3) antiphase square-
wave pulses form when parameter values are favorable,
(4) the dynamics of the system take place with a
dc background, (5) highly structured fluctuations are
present on the tops of the square pulses, and (6) the
time durations of the square pulses correspond to the
lengths of active and passive fiber in the ring.

In conclusion, measurements of the fast temporal
dynamics during a single cavity round trip have been
made for an erbium-doped fiber ring laser. Square-
wave pulsing and irregular dynamics that repeat at
round-trip times have been observed in the two or-
thogonal polarization eigenstates. The experimen-
tally observed properties were described by a unified
model based on an Ikeda-type delay-differential equa-
tion model of the laser. We have shown that fiber
birefringence, polarization controller adjustment. and
the frequency difference between the orthogonal mude
groups influence the nature of the dynamics.
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cal Sciences, Office of Basic Energy Sciences, Office
of Energy Research, U.S. Department of Energy, and
from the U.S. Office of Naval Research. It is a
pleasure to thank J. Garcia-Ojalvo, R. Hilborn.
K. McCoy, and C. Verber for many discussions and
help with the experiments. We also thank S. Strogatz
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Fast intracavity polarization dynamics of an erbium-doped fiber ring laser:
Inclusion of stochastic effects
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The dynamics of a unidirectional erbium-doped fiber laser is investigated on a time scale short enough to
observe. with good resolution, its behavior for individual round-trips in the laser cavity. With an intracavity
polarization controller, a rich variety of nonlinear phenomena, ranging from self-pulsing to square-wave
antiphase patterns in two orthogonal states of polarization. are observed. These patterns evolve continuously in
time. A stochastic delay-differential equation model is proposed to describe this system. Numerical simulations
show that this model satisfactorily accounts for all types of qualitative behavior and reveal that the inclusion of
spontaneous-emission noise is necessary to reproduce the observed continuous pattern evolution. Two differ-
ent. typical types of nonlinear dynamical states are found both numerically and experimentally: a deterministic,
low-dimensional regime and a noise-driven high-dimensional motion. [$1050-2947(97)01403-0]

PACS number(s): 42.65.5f, 42.81.—i

I. INTRODUCTION

The idea of doping glass to obtain amplifying optical fi-
bers is very attractive from both a technological and a fun-
damental point of view. Technologically, fiber amplifiers are
very promising useful devices in all-optical telecommunica-
tion schemes. through their use to replace repeaters in fiber-
optic transmission lines. for instance. When these materials
are complemented with a cavity resonator and a pumping
scheme. laser emission can be obtained. Such systems are
used for the generation of ultrashort puises and solitons.

Besides their evident practical applications. fiber lasers
are very interesting from a basic physics perspective. The
conjunction of the inherent nonlinear character of both the
optical fiber and the light amplification process makes this
type of laser specially suited for investigations of nonlinear
dynamics in optical systems. Furthermore, because of the
amorphous character of the glass host, fiber lasers are the
ideal counterpart of the more extended and well-known
doped-crystal solid-state lasers.

Due to the optical-guiding characteristics of their ampli-
fying medium, fiber lasers can have cavity lengths of the
order of tens of meters, orders of magnitude higher than in
most other lasers. This fact, along with the broad gain profile
of doped fibers, ensures that a large number of longitudinal
modes experience gain and coexist inside the cavity, coupled
through gain sharing. Hence fiber lasers usually operate in a
strongly multimode regime. The dynamics of multimode la-
sers is very rich, including antiphase behavior and self-
organized collective oscillations [1]. Previous experiments in
fiber lasers [2.3] have shown this kind of phenomenon in the
dynamics of two orthogonal states of polarization, which
suggest a description of this system in terms of two super-
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Escola Tecnica Superior d'Enginyers Industrials de Terrassa. Uni-
versitat Politécnica de Catalunya. Colom 11, E-08222 Terrassa,
Spain.
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modes associated with two different polarization eigenstates
of the field. Another dynamical feature that is usually ub-
served in experiments is self-pulsing [4], which has recently
been related to an absorption effect due to interaction be-
tween dopant ions [5]. All the previous experiments haie
been done in the millisecond to microsecond time scale.
which corresponds to the relaxation-oscillation frequency of
the laser. But this system, due to its large cavity length and
thus long round-trip time, gives us a unique chance to ob-
serve its dynamics for individual round-trips inside the cav-
ity. This work aims at the characterization of this fast polar-
ization dynamics in the regimes previously mentioned.

We report experimental observations of the intracavity
dynamics of an erbium-doped fiber laser. A polarization-
controlling device has been included in the cavity and. as a
result, a fast polarization-switching effect, on a time scale of
the order of nanoseconds, has been observed. This kind of
effect is known to occur in semiconductor lasers {6] when a
wave plate is inserted in the laser cavity. Recently, optical
feedback has been found to induce this effect also in Nd-
doped fiber lasers [7], but on a much slower time scale 'on
the order of microseconds). A model is proposed to expluin
the behavior observed. Most models used so far in doped-
fiber lasers to account for antiphase [2], self-pulsing [3]. and
polarization-switching [7] behavior are based on semiclassi-
cal rate equations for each of the two polarization super-
modes, which are coupled to one another through cross satu-
ration and gain sharing. In some cases, the need of explicitly
taking into account the dependence of the system variables
on the propagation direction has been stressed [3]. This con-
sideration, which is, in general, advisable in this system due
to its long cavity, is in our case unavoidable given the ume
scale in which the observations are made. Following Loh and
Tang [8,9] in their modeling of fast polarization selt-
modulation in semiconductor lasers, we develop a delay-
differential equation model that accounts for all kinds of fea-
tures observed. The inclusion of spontaneous-emission noise
is seen to be necessary to obtain a more complete agreement.
Indeed, the importance of spontaneous emission in the dy-
namics of guided lasers is a well-established fact [2}. Finally,

2376 © 1997 The American Physical Society
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FIG. 1. Experimental setup.

in order to simplify the modeling of the system, a ring-cavity
configuration is used. Preliminary results of this investiga-
tion have been reported elsewhere [10].

The outline of the paper is the following. Section II con-
tains a description of the experimental apparatus and a report
of the behavior observed. Section III establishes a theoretical
model that reproduces this behavior. as shown by numerical
simulations. Finally, some conclusions and comments are
made in Sec. IV.

II. EXPERIMENTAL FEATURES
A. Experimental setup

Several wavelengths can be used to optically pump an
erbium-doped fiber amplifier in order to obtain laser emis-
sion. In our case the pump wavelength is fixed at 514.5 nm
and is provided by an Ar " -ion laser. Under these conditions,
the lasing frequency lies in the near infrared, at 1.561um.
The experimental setup is shown in Fig. 1. The amplifying
medium is a 6-m-long erbium-doped fiber. with an ion con-
centration of approximately 240 ppm (corresponding to
4.98x 10* jons/m?). The total cavity length is made to be
20 m long with the addition of 14 m of passive optical fiber.
The fiber is closed on itself in order to form a ring cavity. To
ensure unidirectional operation, an optical isolator is placed
inside the cavity. The optical isolator is based on the Faraday
effect and is polarization insensitive. The pump light coming
from the argon laser is launched into the ring fiber through a
wavelength division multiplexer (WDM), while an output
coupler removes part of the light that circulates inside the
cavity. In both cases, fiber ends were placed in an index-
matching fluid to prevent possible parasitic Fresnel reflec-
tions, as shown in Fig. 1. Two different output couplers have
been used, with coupling ratios 90/10 (10%) and 97/3 (3%),
respectively. A 5 X microscope objective is used to optimize
the coupling of the pump light into the input port of the
WDM. The output emission is passed through a 10% trans-
mission neutral density (ND) filter and a half-wave plate to a
polarization beam splitter. which separates the light into its
two orthogonal polarization components. These components
are measured with two high-speed photodetectors connected
to the two input channels of a fast digital oscilloscope with a
1-GHz sampling rate. This setup allows us to measure the
intensity with 100 data points per cavity round-trip.

In order to modify the polarization state of the light trav-
eling inside the fiber, a polarization controller is used. Polar-
ization controllers produce a phase shift by introducing a
local birefringence into a portion of the fiber. This is accom-
plished by winding the fiber around mandrels of the proper
diameter. It is very important to correctly choose both the
diameter of the mandrels and the number of tums of the fiber
around them: if the diameter is too small. the bending loss of
the device becomes too high; too few turns would undesir-
ably reduce the phase shift. We found that, for wavelengths
of the circulating light, a diameter of 38 mm and three tumns
of fiber around each mandre! was a good choice to produce a
small loss and a retardation effect similar to that of a half-
wave plate. :

B. Characterization of the system

A measurement of the total output power as a function of
pumping is the first standard procedure used to characterize
this laser system. Such a procedure shows that the lasing
threshold is ~150 mW. When the the output light is sepa-
rated into its two orthogonal polarization components. one
can see that the two states have slightly different threshoids
and very different output vs pump slopes in the lasing re-
gime. This is a first indication of the well-known two-mode-
like behavior of doped-fiber lasers [2.3]. By suitably modi-
fying the state of the polarization controller, it is possible to
separate the two main groups of modes that are amplified
inside the cavity. The optical spectra in two orthogonal po-
larization directions, as obtained from an optical spectrum
analyzer, show that the two mode groups are indeed orthogo-
nal and linearly polarized, with spectral peaks centered
around ~1.560 52 um and ~1.561 05 um, respectively.

The behavior of output vs pump power in the lasing re-
gime is observed to be linear, which is a characteristic of
most lasers. Nevertheless, at high pump powers, an increase
of output power fluctuations occurs while making the mea-
surements. In order to quantify this effect, one can measure
the standard deviation of these fluctuations as a function of
the mean light intensity and pump power. The results are
shown in Fig. 2 for the case of 10% output coupling. For the
sake of clarity, we should remark at this point that the pump
power that appears in this figure is just the recorded output of

‘the pump laser; it does not correspond exactly to the actual

power that is being injected into the fiber laser. due to the
imperfect launching of pump light into the cavity through the
WDM. In any case, an analysis of this figure reveals a steady
increase of the fluctuations as both pump level and output
power are raised. This phenomenon is rather unexpected: in
most single mode lasers, fluctuations produced by spontane-
ous emission are independent of pump level once lasing has
been achieved. This is so because the spontaneous-emission
rate is proportional to the population inversion in the ampli-
fying medium, and this is constant beyond threshold. as can
be seen from any rate-equation model [11]. In multimode
lasers, these fluctuations may be deterministic and originate
in the nonlinear dynamics of modes coupled through shanng
of the population inversion.

We can calculate the number of modes inside the cavity
by measuring the optical spectrum of the output light. The
ratio of its full width at half maximum to the free spectral
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FIG. 2. Standard deviation of the output intensity fluctuations vs
the mean output level and pump power. Two different sample times
(shown in the legend) have been used. The pump power shown in
the lower figure does not correspond to the power that is actually
injected into the fiber.

range of the cavity (longitudinal mode spacing) gives us an
estimate of this quantity. We observe a pronounced spectral
narrowing and a corresponding sharp decrease in the number
of modes (from ~3X10% to ~2X 10%) as the lasing thresh-
old is crossed. Note, however, that even in the lasing regime
the number of amplified modes is very large. This fact shows
the strongly multimode character of fiber lasers.

C. Dynamical behavior
1. Self-pulsing

A characteristic time trace of the total output intensity
extracted by the output coupler in the higher loss case
(10% coupling) is shown in Fig. 3 for a pump rate well
above threshold. Self-pulsing is observed with a periodicity
of ~ 100 ns. This corresponds to the cavity round-trip time of
our system, which is estimated as L/v, where L=20 m is the
cavity length and v=c/n is the speed of light in the fiber.
The index of refraction of erbium-doped fiber is n=1.46.
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FIG. 3. Total output intensity time trace showing self-pulsing
with 10% output coupler. The pump power is 400 mW.
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One can now resolve the output in terms of its orthogonal
linear polarization components. These components, although
coupled. may exhibit very different dynamics. Figure 4(a)
shows quasiperiodic behavior in one polarization direction
and random evolution in the other, also for 10% output cou-
pling. In other experimental situations, one can observe dif-
ferent quasiperiodic evolution in the two modes. Figure 4(b)
corresponds to a case with period-1 behavior in one direction
and period-7 in the other. The 3% output coupler has been
used in this case.

2. Influence of the polarization controller

Another way of establishing the distinct character of the
polarization-resolved intensity time traces compared to those
of the total output intensity is through their power spectrum.
In the latter case, a typical spectrum shows peaks separated
by the fundamental cavity frequency of 9.8 MHz. However.
when the signal used comes from a single polarization direc-
tion. sideband peaks appear between the main ones. These
sidebands can be tuned by manipulating the polarization con-
troller and eventually can be made to overlap. When this
happens and losses are small enough (i.e.. the light intensity
inside the cavity is high enough), the pulsed behavior disap-
pears and square pulses develop in the output intensity of the




S5 FAST INTRACAVITY POLARIZATION DYNAMICS OF ...

l.O k

WRREANN

MJMJ 7

Rolal‘wo inten:
=3
'M

00

“MWWWMMmeﬁ

§ i ‘ f
c " | |
29
s r l J J ‘ ‘ | l"
3 |
2 0.4 +M Y
-g i
T 02 L
'
0.0 .
0.0 200.0 400.0 600.0 800.0 1000.0

time (ns)

FIG. S. Antiphase square pulsing in the two orthogonal polar-
ization components of the output light for a given setting of the
polarization controller and a 3% output coupling. The pump power
is 600 mW.

orthogonal polarization states. This behavior is antiphase in
the two states and is periodic at the cavity round-trip time, as
shown in Fig. 5. The requirement that losses have to be low
for this effect to occur is reflected in the fact that square
pulses are observed when the 3% output coupler is used, but
not in the 10% case. It is also worth noting that the time
durations of the plateaus correspond to the lengths of the
active and passive part of the fiber. In other words, the 70-ns
upper part of the pulse in the y-polarization trace of Fig. 5
corresponds to the 14 m of passive fiber, whereas the 30-ns
low.r part is related to the 6 m of active erbium-doped fiber.
A threshold pump power is typically observed for the onset
of square pulsing. For the measurements shown, square
pulses formed at a pump power ~2.2 times above threshold.
In addition to square pulses, other antiphase pulse patterns
have been observed. One of them is shown in Fig. 6. A final
remark on this behavior is that the irregular intensity patterns
superimposed on the plateaus of the square waves evolve
continuously and slowly in time.
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FIG. 6. Another antiphase pattern observed. Here the pump
power is here 700 mW.
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D. Nonlinear analysis

We have observed so far that this system has a wide va-
riety of nonlinear attractors: regular or irregular temporal
patterns in which the dynamics are trapped. Which specific
attractor occurs depends on many factors: the state of the
polarization controller, the pump power, the output losses.
etc. We are now interested in dynamical characteristics of
these attractors.

The state space of a dynamical system can be recon-
structed from the information obtained through a scalar mea-
surement (the intensity of one of the polarization eigenstates,
for instance) by means of time-delay vectors {12]. If we de-
note as x(n)=x(to+nA) a scalar set of measurements
sampled at equally spaced time intervals A, one can con-
struct d-dimensional vectors N

y(n)=(x(n)x(n+T), ... x(n+[d—1]T)). ()
The evolution of these time-delayed vectors in state space
describes an attractor. There exists a minimum value of 4 for
this attractor to properly represent the dynamical behavior of
the system. This value is called the embedding dimension of
the system. Both the embedding dimension and the time lag
T have to be chosen carefully if one wants this state space
reconstruction to be really useful.

To obtain a reasonable value of the time delay T, one has
to reach a compromise between the high correlation between
vector components that would arise if T is chosen too small
[x(n+iT) and x(n+(i—1)T) would be nearly identical]
and their statistical independence if T is too large. All these
features are reflected in the so-called average mutual infor-
mation function, which can be interpreted as a nonlinear cor-
relation function between the time series x(n) and
x(n+ At) as a function of the time lag At. Its definition is

AHAO=2;PGMLﬂn+A0)

P(s(n),s(n+AD) |

X log; P(s(n))P(s(n+At))j!' 2)

where P(s(n)) is the probability density of the process
s(n) and P(s(n),s(n+Az)) is the joint probability of the
two time-shifted series. A high value of this function repre-
sents a high correlation between the series and a low value
corresponds to a high degree of independence. A suitable
value of T will be intermediate between these two regimes.
A reasonable prescription that is frequently used [13] is to
choose T as the first minimum of M(A¢).

We can compute the average mutual information function
(2) for the time series measurements obtained from our ex-
periment. A typical result is shown in Fig. 7, corresponding
to the intensity for a single polarization direction. The behav-
ior is roughly the same for the other polarization direction
and for the total output and also for the other different dy-
namical regimes investigated. The results suggest that an ad-
equate value for the time delay is 7=3.

Once the time delay has been chosen, one needs to deter-
mine the embedding dimension. To do so, we use a method
proposed in Ref. [14]. This procedure determines the mini-
mum useful embedding dimension as that for which the per-
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FIG. 7. Self-pulsing time series for the intensity output in one of
the polarization directions and its corresponding average mutual
information function. The pulse separation is 274 and the pump
power is 1000 mW.

centage of false nearest neighbors (FNNs) in the attractor
drops to zero. Two points of the attractor are said to be FNNs
when they seem to be close only because the attractor is
embedded in a dimension that is too low, but they are actu-
ally separated from one another. They can be identified by
measuring the distance between them in two consecutive di-
mensions. When this distance is very small in the lowest-
dimensional space and much larger in the highest-
dimensional space. the two points are FNNs. The procedure
consists of computing the percentage of FNNs for increasing
dimensions. The embedding dimension is then determined as
that dimension for which this percentage drops to a very
small number. Figure 8 presents the result of this method for
two different time series exhibiting very different dynamical
behaviors. Figure 8(a) corresponds to a quasiperiodic low-
dimensional regime with an embedding dimension dg=4.
Figure 8(b), on the other hand. shows a nonperiodic time
series whose percentage of FNNs does not go to zero as the
embedding dimension increases. This indicates that the dy-
namics in this case is high dimensional and hence noise
driven. A similar coexistence of deterministic and stochastic
behavior in the same dynamical system has recently been
observed in a Nd:YAG laser (where YAG denotes yttrium
aluminum gamnet) exhibiting deterministic chaos [15].

III. MODELING
A. A delay-differential equation model

To develop a theoretical model that reproduces the obser-
vations made so far, several important characteristics of this
system have to be taken into account.

(i) Even though many longitudinal modes are being am-
plified inside the cavity, the dynamics of the system can be
described in terms of two supermodes corresponding to two
orthogonal polarization states of the emitted light [2.3.7].

(i1) A description in terms of two-level rate equations is
not suitable because of the long cavity of fiber lasers [3].
Variations in the direction of propagation of laser light have
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to be taken into account. This requirement is completely un-
avoidable in our case since we are observing the dynamics
within individual cavity round-trips.

(iii) The polarization controller is acting as an impertect
half-wave plate that almost completely switches polanza-
tions once every cavity round-trip.

(iv) Only part of the total cavity length is active medium
Hence this system has two different characteristic lengths
which are reflected in the experimental results (see Sec
II C 2) and must appear also in the theoretical model.

(v) Spontaneous-emission noise is known to have an 1m-
portant influence on the behavior of guided lasers such as the
one we are dealing with in this experiment [2]. It thus seems
necessary to include it in any realistic model of fiber lasers.

The first three points in the previous list have alreadyv
been faced by Loh and Tang [8,9] in their description ot
ultrafast polarization self-modulation in semiconductor la-
sers. In this study, they developed a delay-differential equa-
tion model similar in approach to that used by Ikeda and
co-workers [16,17] to analyze instabilities in the absorption
of light by a passive medium placed inside a ring cavity and
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by Otsuka and Iwamura [18] to model the dynamics of semi-
conductor laser amplifiers. We will follow the spirit of Loh
and Tang's study to derive a model for our system.

Let E(t,z) and E;(¢,2) be the complex field envelopes
of the two polarization modes of the amplified radiation. The
following set of equations can be derived for their time evo-
lution after adiabatically eliminating the polarization of the
medium from the comresponding Maxwell-Bloch equations

[8]:

aE,(r.:)+l dE\(1.2) a =i
> o, A —?( —ia)[N-No]E\(t,2)
+[£|(1‘Z)' (3)
3E2(t.:)+ 1 853(1.:)_02 .
oz Z ) = ] ,(l—'laz)[N"'No]Ez(t;Z)
+[L2(f,1), . (4)
IN(1.2) |E,|?
P =P—")'”[N(I,Z)+N,]—0)[N(t,2)—NO]H
N N |E,|?
a,[N(1,2) o]'g:,‘z'- )

It can be seen that the two modes are coupled through
N(t.z), the population inversion of the medium. Ny is the
population inversion necessary for transparency (i.e., for zero
gain) and N, the density of erbium ions in the fiber. The
quantity N, has to be taken into account because erbium-
doped fiber, when pumped at 514.5 nm, behaves as a three-
level medium with incoherent pumping [11]. a, and a, are
gain coefficients, a, and a, represert the detuning between
the corresponding mode frequency w; and the resonance fre-
quency of the cavity wg [a;=(wo—w;)/y, , where y, is the
decay rate of the polarization of the medium], v, is the ve-
locity of light in the medium (assumed equal for the two
modes), and P is the pump rate. These parameters have been
defined in Ref. [10]. : is the direction of propagation of the
light inside the cavity. u(2.2) and u,(t,z) are spatiotempo-

J

1 r ‘
Y1) = ERIAIH‘,’IU-TR)CXP(?"(I_ial)[¢(t)— 1]) +m(0)

X

1 r
Un(1)= iRzAzt['l'l(f‘fn)exl’(‘il'(l‘ial)[d’(’)‘ 1]) +m (1)

X

Ed

- Re[ U (1— 1) E2(D)],

r
9"2(“7«)3"?(72'(1 "i“z)[d’(l)"l]) + 7(1)

r
Yo(t— fn)ew(yz(l —iay)[ (1) - 1]) +m(1)

ral Gaussian and white stochastic processes that account for
spontaneous emission. They have zero mean and correlation
given by

(ni(t.2)u}(t',2"))= 2D,6;;8(t—=1")6(z=2").  (6)

We are now going to map the spatial dependence of the
system into time by making use of the boundary conditions
that have to be fulfilled by the fields £, and E, inside the
cavity. These boundary conditions are

(e'+1)

1 lp
EI(I,O)=ERlelle[El(t—;;,lA
lp ) )
+E, 1= = 1, ](e"*—1)e A, N
Vg
lp .
E,(1,0)= =Ry E\| t—— 1, ](e*— 1)
2 Vg

l . .
+E2(t——’;,14)(e"’+l)e"ﬁ]. (8)
Vg .

Here !, and [ are the lengths of the active and passive parts
of the fiber, respectively, and L=1I,+1{p is the total fiber
length. The reference frame is chosen in such a way that
z=0 corresponds to one end of the active fiber. R, and K.
are the return coefficients of the output coupler for each une
of the modes. The parameter ¢ represents the phase shift
caused by the polarization controlier. In the perfect haif-
wave case (@ =) it can be seen that the previous boundary
conditions merely represent an exchange of polarizations ev-
ery round-trip. We shall consider ¢ near, but not equal to. its
perfect half-wave value. Finally, the parameter 3 represents
the birefringence of the fiber, which causes different phase
shifts in the two polarization modes. These different phase
shifts are produced by the different velocities that the two
modes actually have when traveling through the fiber, which
can be modeled satisfactorily by including the parameter 3
while keeping v, equal in both modes [9].

The previous boundary conditions can be used in combi-
nation with an integration of Eqs. (3)-(5) with respect to - 1o
obtain the difference-differential model [9,19]

(e'®+1)

(e”—l)e"ﬂ], 19}

(e'*=1)

(e“’+l)e"ﬁl, 110

¢ =g-&(1) = ¢y (1= 7R)|*(exp{T [ #(1) — 1]} = 1) = Re[ ¢, (1= TR) E:(1)] = [ Y22 = 7o) P (exp{T o[ (1) - 11} - 1)

(1
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where new dimensionless variables have been defined. ¢,
and ¢, are related to the electric field envelopes at z=0,

E(1,0)

(1= 12)
ol \/ﬁwIA'y”NO (

and ¢ is the dimensionless total population inversion in the
active fiber,

W(I_TR,[.‘) l

n
A _IANo fo N(t—1g,2)dz. (13)

o(1)=

Time is now measured in units of yﬁ'. Tg is the cavity
round-trip time. also measured in units of 7,]'
(tg=L/v,y)). We have defined a dimensionless gain pa-
rameter and an effective pump rate as

P N,
Ti=ail Ny, g=—r—-=. (14)
YiNo  No

A and A, are phase-shift coefficients that can be evaluated
as [9]

!\vEeilezex r _ri -_—
A, p[la,?[qb(O) 1]1. (15)
L

An inspection of the delay-differential model (9)-(11) shows
that the original spontaneous emission noise sources
mi(t,2), i={1.2}, have given rise to new noise terms
7;(t) and.£(¢) in all three equations for the electric fields
and the population inversion. The stochastic processes
7:(r) come from the formal integration of the spontaneous-
emission noise sources u,(f,z) over the space variable :,
whereas £,(t) appear through the introduction of the result of
this integration into Eq. (5). It is worth noting that these new
stochastic processes are no longer space dependent: this is
true of all the other quantities of the model as well. Note also
that in the population inversion equation the noise terms are
multiplicative [19]. They are all Gaussian distributed with
zero mean. and we will denote their variances by D] and
D¢. We will treat these noise strengths as adjustable param-
eters for our studies: they can be related to the physical prop-
erties of the system as [19)

pr=—2:
i_flw,-No'
’ 9 9,9 Di
D¥=4a;(Ngs—Ng)* 3 —— (16)

Aﬁw,-No ’

where N is the steady-state value of the population inver-
sion.

In summary, we have obtained a delay-differential equa-
tion model that translates the space dependence on the propa-
gation direction = (and hence its infinite-dimensional charac-
ter) into a dependence on time-delayed quantities. The model
also includes the influence of intrinsic noise sources. We
have performed extensive numerical computations with this
model. and the results obtained will be described in the fol-
iowing subsections.
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The simulations are’performed as follows. Each cavity
round-trip time is divided into equal-size time intervals (or,
equivalently, the cavity is discretized in a number of equal
cells). The evolution of the fields ¢, and ¢, depends on their
values one round-trip earlier [Egs. (9) and (10)] and the total
inversion ¢ evolves according to the differential equation
(11), which is discretized in the equally spaced time intervals
defined above (or in the one-dimensional spatial lattice in
which the cavity has been divided). Since in our case the
cavity round-trip time is much smaller than the population
inversion decay time, the integration time steps resulting
from a not very dense cavity subdivision are small enough to
ensure numerical stability in the algorithm that integrates the
differential equation. We will usually choose a subdivision
of the cavity in 100 parts and use a Heun algorithm (a sto-
chastic version of a second-order Runge-Kutta scheme) [20]
to simulate that equation. The multiplicative noise terms are
treated according to a Stratonovich interpretation.

A distinction has to be made at this point between the
active and the passive fiber. Since the polarization controller
is located in the passive part of the cavity and the delay
differential model maps time into space, the value of the
phase shift ¢ will be close to 7 only in the time instants
corresponding to the passive part of the fiber. The rest of the
time ¢ will be near zero (not exactly zero because any small
winding in the active fiber may also have a small phase-
shifting effect). Hence we will take ¢ to be equal to '
(small) in the active region and to ¢, (close to 7) in the
passive part.

Several of the parameters of the model will be fixed by
physical requirements of the active medium and the experi-
mental setup, whereas others will be used as adjustable pa-
rameters. Among the former, we have the gain coefficients
a, and a,, which will be taken to be coincident and equal to
203~ 7 m? The detuning factors a; and @, will also
be .. n to be the same and equal to 3.52X10"2. The
poru. .n decay rate y) is 10> s~ and its inverse is the
ume unit we use throughout this section. The lengths of the
active and passive fibers are the ones used in the experiment
(6 m and 14 m, respectively), with a total cavity length
of L=20 m, which gives a round-trip time equal to
7—R=nL/c-y”=10’5 dimensionless time units. The dopant
ion concentration is N,=4.98X 10® m ™3 and the transpar-
ency inversion is No=~10 m™3. The return coefficient of
the output coupler will be taken to be, according to the ex-
perimental setup, R, =R,=0.97, equal for both polarization
modes. The noise strengths are chosen to be
D7=D]=D§{=D§=10"". To put these noise source vari-
ances in perspective, we should remark at this point that the
magnitude of the light intensity in the lasing regime is. in our
dimensionless units, of the order of 10°. The pump rate will
take several values for the different regimes. The phase shifts
®4 and @p and the birefringence coefficient 8 will be adjust-
able parameters. A summary of the previous values is shown
in Table I

B. Characterization of the model

A first comparison between the numerical model that has
just been derived and the experimental observations shown
previously is made by computing how the laser vutput
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TABLE 1. Parameters used in the delay-differential model.

Parameter Value Units Description
a, 203x10°2  m?  gain coefficients
ap, 3.52x 1072 detuning factors
o 102 s~ population decay rate
A 6 m length of active fiber
L 20 m total cavity length
7 107’ s cavity round-trip time
Ng 10%° m~®  transparency inversion
N, 498x10® m~3 dopant ion concentration
R, 0.97 output coupler return
D/, 1073 coefficients
electric-field noise
D¢, 10°° strength
population inversion noise
strength

changes with increasing pump power. A sudden jump in
photon number (over nine orders of magnitude) is observed
and represents the transition from a spontaneous emission
(no lasing) to a stimulated emission regime (lasing). Linear
behavior is observed in the lasing regime. The estimated
value of the lasing threshold (~5X10° in dimensionless
units) is in qualitative agreement with the experimental re-
sult.

It has also been found that this model reproduces the
striking experimental observation of an increase in intensity
fluctuations ‘for higher pumping and output power. The re-
sults are shown in Fig. 9 and should be compared with their
experimental counterpart presented in Fig. 4. The fact that
this behavior persists even in the absence of stochastic terms
in the simulations indicates that these intensity fluctuations
are of deterministic origin. They are related to spiking and
pulsing phenomena occurring in the time evolution of the
light intensity and may be caused by the coupling dynamics
between the many modes that are undergoing amplification,
as mentioned in Sec. III A.
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FIG. 9. Standard deviation of the total intensity output vs total
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FIG. 10. Polarization-resolved quasiperiodic self-pulsing time
traces. A periodicity equal to one cavity round-trip time is observed.
The pump rate is ¢=2X 10° dimensionless units, roughly 5 times
above threshold.

C. Dynamical behavior
1. Self-pulsing

Typical time traces of the output intensity /;=|y;|*, as
obtained from our delay-differential model, are shown in
Figs. 10 and 11. Self-pulsing behavior is clearly observed.
with different overall characteristics depending on the values
of the parameters. Figure 10 presents antiphase quasiperiodic
self-pulses at a periodicity of one cavity round-trip time. Fig-
ure 11 shows period-2 behavior. The difference between
both cases lies only in the value of the birefringence factor,
equal to 0.0015 in the first case and taken to be exactly zero
in the second. The values chosen for the phase shifts are
0.027 in the active fiber and 7—0.175 in the passive fiber.
All the other parameters are those of Table I. It is worth
noting that in all cases we obtain antiphase motion for the
two polarization modes. The structures immersed in this self-
pulsing behavior are observed-to drift slowly as time
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FIG. 11. Polarization-resolved quasiperiodic self-pulsing time
traces with a period equal to 2 75 . The pump rate is the same as in
Fig. 10.
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FIG. 12. Three snapshots of the self-pulsing behavior of one
polarization mode. showing the slow drift of temporal patterns due
to the effect of stochastic noise sources. These snapshots are sepa-
rated in time by several hundred round-trips. (a) Numerical simula-
tion (parameters are the same as in the previous figures) and (b)
experimental behavior (in this case the cavity round-trip time is
~ 130 ns).

evolves, as observed in the experiments (see Fig. 12). This
pattern evolution does not occur if the noise sources are ne-
glected in the model, which indicates the importance of
spontaneous emission in this system.

2. Influence of the phase shifts

The value of ¢p used in the previous simulations corre-
sponds to an imperfect half-wave plate. By taking a value of
this phase shift closer to 7 (which amounts to properly tun-
ing the polarization-controller mandrels in the experiment),
we can reproduce the square-wave behavior observed in the
real system. Figure 13 is the result of making
¢p=m=0.015 and 8=0.020. As in the experimental output.
these square waves are antiphase in both polarization com-
ponents, with a period equal to the cavity round-trip time.
and a relation between the lengths of the upper and lower
plateau equal to that between the lengths of the active and
passive part of the cavity. Also. as in the experiment, the
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FIG. 13. Antiphase square pulses generated by the delay-
differential model by properly tuning the value of ¢p. The pump
rate is the same as in the previous figures.

patterns on top of the square pulses change continuously and
slowly with time, as shown in Fig. 14, where three series of
ten cavity round-trip times occurring at different instants of
the same dynamical evolution are compared. Again, this be-
havior is not obtained if the spontaneous-emission noise is
not taken into account.

D. Nonlinear analysis

To complete our comparison between the results given by
the delay-differential model that has been derived in this sec-
tion and the results obtained from the experimental system.
we will analyze the numerical time traces from a nonlinear
dy~ mics point of view. We can compute the average mutual
in:  ation function of a polarization-resolved output time
rz  -igure 15 shows the typical behavior of this function
[wnich in this case corresponds specifically to the time trace
shown in Fig. 16(a)]. We conclude that a reasonable value
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FIG. 14. Three snapshots of the numerically simulated behavior
of one polarization mode, showing that the detailed structure of the
square-wave patterns evolves slowly in time. The parameters are
the same as in the previous figures.
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FIG. 15. Typical example of the average mutual information
function obtained numerically. The actual time trace from which
this function has been derived is shown in Fig. 16(a).

for the time lag to be used in phase-space reconstruction is
At=10"" dimensionless units, which corresponds to one
time interval in the cavity subdivision we have chosen
throughout this work. We now compute the’ percentage of
false nearest neighbors for different dimensions in two dif-
ferent regimes. Figure 16(a) shows a time trace exhibiting a
high degree of periodicity and its corresponding false-
nearest-neighbor percentage vs embedding dimension. This
result shows that the behavior of the system in this regime is
low-dimensional and deterministic, with an embedding di-
mension dg=4. Figure 16(b), on the other hand, shows a
nonperiodic time trace and a false-nearest-neighbor percent-
age that does nor go to zero for increasing dimension. imply-
ing that the behavior in this case is high dimensional and
noise driven. We remind the reader that these two different
regimes have also been obtained experimentally (Fig. 8). We
regard this agreement as a significant indication of the suc-
cess of our model in capturing the dynamical behavior of the
laser system.

IV. CONCLUSION

We have analyzed the fast, intracavity dynamics of an
erbium-doped fiber laser in a ring cavity. Since it is well
known that this kind of system presents interesting polariza-
tion dynamics, we have introduced a polarization controller
inside the laser cavity. Self-pulsing has been observed in a
very broad range of system configurations, both in the total
output intensity of the laser and in the polarization-resolved
dynamics. in periods of the order of the cavity round-trip
time. In this regime the two different polarization modes can
behave independently, i.e., one may show quasiperiodic dy-
namics and the other chaotic behavior, for instance. Due to
the long cavity and fast detection devices, we have been able
to sample the behavior inside a cavity round-trip. By care-
fully tuning the polarization controller. the self-pulsing be-
havior can be transformed into square-wave dynamics. In
this case. the behavior of the two polarization modes is usu-
ally antiphase, as predicted for lasers with a strong multi-
mode character. All these features can be reproduced by a
stochastic delay-differential equation model, which takes
into account the fact that a mean-field approximation in the
propagation direction is misleading in this kind of long-
cavity laser. Spontaneous emission is introduced via a noise
term in the original Maxwell-Bloch equations and leads to a
nontrivial stochastic contribution to the delay-differential
model. This model is able to reproduce both the seif-pulsing
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FIG. 16. Quasiperiodic time trace and its percentage of false
nearest neighbors vs dimension. Full circles represent the numencal
result, which corresponds to a pump rate of g=6X 10° dimensin
less units, ~ 1.1 times above threshold. Empty circ'es are the ¢
perimental result of Fig. 8(a). (b) Nonperiodic time trace and
percentage of false nearest neighbors vs dimension, which displas
a residual percentage of FNNs, implying random dynamics. Fuil
circles represent the numerical result, which corresponds to a pump
rate of g=1X 10° dimensionless units. ~2 times above threshold

" In this case, the noise’ source strengths have been increased to u

value of 1.2X 10™* dimensionless units to obtain better agreement
with the experiments, which are represented by empty circles [from
Fig. 8(b)).

and the square-wave behavior. Spontaneous-emission noisc
is necessary to obtain the observed slow time drift of the
patterns underlying the square-pulse structure. However.
even though spontaneous emission (and hence the noise
sources in the model) is always present in the laser operation.
we observe, numerically and experimentally, both a deter-
ministic and a noise-driven regime for slightly different val-
ues of the system parameters. The first situation corresponds
to a quasiperiodic, low-dimensional motion and the second
to a random, high-dimensional behavior. The coexistence ot
these two types of behavior in the same nonlinear dynamical
system is a remarkable feature that deserves further study.
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Abstract

The effect of spontaneous emission noise on the light circulating in a ring cavity with a nonlinear absorbing medium is
studied by means of a set of stochastic delay-differential equations based on the deterministic lkeda model. Noise fluctuations
are found to be amplified as the first bifurcation from the steady state of the system is approached.

1. Introduction

Delay-differential equations are frequently used to
model nonlinear dynamical systems. Among them, the
so-called Tkeda model is particularly well known in the
analysis of the dynamical behavior of nonlinear opti-
cal media. Since its introduction by Ikeda and cowork-
ers [1.2] in the investigation of the light transmission
process by a nonlinear absorber contained in a ring
cavity, it has increasingly been applied to the stuc'
of the interaction of light with either passive [3-F
or active [6,7] media. Also, due to its highly com:
plex muitistable behavior, the model eventually leads
to chaos through a rich variety of routes {8]. Hence.
its simplified map version has become a paradigm in
the analysis of chaotic systems [9-12]. It is therefore
of interest to investigate the influence of spontaneous
emission noise on the dynamics of this system. It is
particularly important to consider the physical origin
of the noise source; here we begin with the Maxwell-
Bloch equations and outline the inclusion of sponta-

'On leave from: Dept. de Fisica i Enginyeria Nuclear.
ETS. d'Enginyers Industrials de Terrassa. Univ. Politécnica de
Catalunya, Colom 11, E-08222 Tefrassa. Spain.

neous emission noise in a physically meaningful way,
leading to a stochastic version of the deterministic
Ikeda model.

2. Derivation of the stochastic Ikeda model

Let us consider the simple situation, originally anal-
ysed by Ikeda in his seminal paper [1], of 2 nonlin-
ear absorbing medium placed in a ring cavity. This
medium shall be assumed to be a set of homoge-
neously broadened two-level atoms, whose interaction
with an incident light beam can be described by the
following equations,

OE .

E:(a+1ﬂ)(N—N0)E+#. (1)
3N__' _ _ 2

— = yN = (N — Np)|E)%, (2)

where E(7,z) is the complex envelope of the elec-
tric field which propagates in the absorber, N(7.2)
is the population inversion (N < O for an absorber)
and u(7,z) is a Gaussian and spatio-temporal white
stochastic process accounting for spontaneous emis-
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sion processes. This noise term is chosen to have zero
mean and correlation equal to

(w(r. )" (7, 2")) =2D8(r - 7)8(z = 2).  (3)

It should be noted that the white character of this noise
source is a mathematical idealization of the sponta-
neous emission process, which actually has correla-
tions in time and space that are very small in compar-
ison to all other time and length scales of the system.

Egs. (1), (2) can be obtained in a straightfor-
ward way from the standard Maxwell-Bloch equa-
tions which describe the propagation of the electric
field inside the absorber by adiabatically eliminating
the polarization of the medium, whose relaxation rate
is much larger that those of N and E. The space vari-
able z corresponds to the direction of light propaga-
tion (transverse effects which might appear in the di-
rections perpendicular to propagation [ 13,14] are not
considered here). The time variable 7 is written in a
reference frame which moves with the velocity vg of
light in the medium, 7=t — z/ug. @ (> 0) is the ab-
sorption coefficient of the medium, B is a parameter
depending on the detuning between the cavity and the
transition resonance frequencies, and ¥ is the popula-
tion decay rate. The coefficient {2 of the nonlinear term
in (2) depends on the dipole moment of the transition.
Ny is the value of N corresponding to transparency.

Let L denote the length of the absorbing medium,
L that of the whole cavity and [ = £ — L. Then, the
relation between the incident field E; and the field
propagating inside the cavity is given by the following
boundary condition,

E(1.0) = VT £+ Rexp(OIE (1 - L) @

Ug

where T is the transmission coefficient of the input
mirror M1 and R = | =T is the reflexion coefficient of
both the input and output mirrors M1 and M2 (see Fig.
1). Mirrors M3 and M4 are assumed to be perfectly
reflecting. k is the light wavenumber.

The space dependence of the previous equations can
be removed by using this boundary condition. First,
we formally integrate Eq. (1) with respect to z and
introduce the result into Eq. (2). As aresult, the origi-
nally additive noise u generates a multiplicative noise
term in the equation for the population inversion,

z=0) 2=L
E, A
!
M absorber M2
A '
!
M3’ M4

\ ) /
\ /

Fig. 1. Scheme of the ring cavity containing the absorber.

E (r +-Z—,z)
Ug

= E(r,0) exp [(a@+iB)(W - No2)| + (7.2}

(
W)
or
+2‘0;{exp [2a(W - Noz)] — 1} 1E(7.0) ¢
+ 202(Ns — No)Re (E(1,0) x(7.2)). (

where W(r, z) is defined as

z ,
W(‘r,z):/dz'N(r-é— z—.z'). {
Ug
0

To obtain the evolution equation for W(r.2) (}
(6)), the variations of the population inversion in !
(5) have been assumed to be negligible. Numeri
simulations show that the variations in this quan:
are a very small fraction of its average value Ns (:
Fig. 2). Also, two new stochastic processes have b
defined, which are also Gaussian with zero mean :
correlations,

(r(‘r'Z)r‘(‘T’,Z)) =2D;6(1-_ 1-’)'
(x(r.2)x"(7'.2)) =2D°8(r = 1), ‘
(x(r.2)F(7'.2)) =2D*8(r — 7'). ¢

These noise sources arise from the application of
tegral operators to the original spontaneous emiss
noise. In order to obtain the simple expressions shc
above for the variances, the population inversion
been assumed again to be constant. Notice also

the cross-correlation between y(7.2) and (7.2




M2
'
M4
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)]+ r(n2).
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1200

o 00.0 05 1.0

t

Fig. 2. Typical cvolution of the total population inversion, com-
ing from a simulation of Eqs. (11) and (12), with parameters:
A1=990. 8 =060. ¢y =0.0. 7g = 0.01. and Dy = D¢ =0.0.

non-zcro. Nevertheless, the influence of this cross-
corrclation in the dynamics of the system was found
ncgligible in numerical simulations, and it has not been
considered in what follows. It should also be noted
that. in deriving Eq. (6), a contribution proportional
to iI"!* has been discarded, due to the small strength
of this noise source.

Introductionof Eq. (5) into boundary condition (4)
and use of the population inversion Eq. (6) at point
: = L leads to the following difference-differential
cquations.

Wty = A+By(r—rg)exp{i[d(1) + o]} +n(1),
(1

d -
d_‘f =—-¢ + !‘/’(I—TR)|2+2RC {dI(I—TR)f(H".
(1z

Time ¢ is now measured in units of y~' and the fol-
lowing dimensionless variables have been defined.

Yty = E(1,0) exp(aWo)W/%.

&(1) = BW(t—1g,L),

where Wy = NpL.

The noise sources n(t) and £(t) are dimensionless
and space-independent versions of I” and y. It can
easily be seen that its variances D,, and Dy are related
to the original physical parameters by

(13)

(14)

D, = DR**" QLB/2a, (15)

D¢ = De” ™ QL3 B2a (N, - Ny). (16)

A remark should be made at this point in relation to
the difference equation (11). This equation makes no
sense mathematically if the stochastic process n(¢)
is taken to be white. This interpretation problem can
be avoided by recalling that the original spontaneous
emission noise has a very small, but non-negligible,
correlation time. In this case the parameter D corre-
sponds to the (finite) value of the correlation function
of the noise at equal times.

Besides these two noise strengths. this mode! has
four other independent parameters: the dimensionless
incident field A = VTE exp(aW,) /128 2ay. the
dissipation B = Rexp(—aW;), the phase <hitt due to
propagation ¢ = kL — BNyL and the dimensionless
cavity round-trip time 7 = yL/v,.

Egs. (11) and. (12) define the stochastic version
of the standard Ikeda model, which includes the exis-
tence of spontaneous emission processes of the two-
level atoms forming the absorber. It is worth noting
that what is initially an additive noise in the orniginal
partial-differential equation scheme has become multi-
plicative in the difference-differential equation model.
This may be considered as an indication of the non-
trivial influence of the spontaneous emission process.

3. Influence of noise on dynamics

As stated above, the dynamical properties ot even
the deterministic version of the Ikeda model lead 10 a
highly complex behavior of the model. In particular,
the steady state solution of the model. which can be
seen to obey the following transcendental cquation,

a2 [1+ B* —2Bcos (jys | + o)) = A* . «17)

is amultivalued function of the input parameter 1 (see
Fig. 3). This means that even in the cases in which
the system evolves towards a fixed-point attractor, it
faces a high degree of multistability. The etfects of
this fact can immediately be seen by looking at the
bifurcation diagram of the light intensity extrema ¢|2
versus the input parameter A (Fig. 4). The ~tep-like
appearance of this diagram is a clear indication ot the
multistable character of the attractor structurc of the
system, each step corresponding to a jump hciween
two equally stable states. The position of the jumps




54 J. Gareia-Ojalvo, R. Roy / Physics Letters A 224(1 996) 51-56
80 — (a)
i A=9.8 A=105
i A .
80 - i Lo
[ : . N
i -
; PSD |
] —
TARPYRS \ h :
1°u H
i j !
i 107 A=115 |
20 - '
0° U w
' | o “U l | | !
o'oofo 40 8.0 20 10* ! \ .
A , s
10

Fig. 3. Steady state solution of the deterministic Ikeda map. Pa-
rameters are B = 0.60, ¢o = 0.0 and 75 = 0.01.

m-
W, 200 -

100 -

Fig. 4. Bifurcation diagram of the deterministic (above) and the
stochastic (below) Ikeda model. Parameters are those of Fig. 3.
In the stochastic case Dy = Dg = 10™%,

is slightly affected by the choice of initial conditions,
suggesting that the role of spontaneous emission noise
might be relevant as well.

In order to analyse the influence of noise in the be-
havior of the system, we will first compare how the
transition to chaos is produced in the deterministic and
the stochastic cases. The algorithm used to integrate
the differential equation appearing in the stochastic
model is a standard Heun algorithm [15], where the
integration time step is the one imposed by the dis-
crete equation for ¢ and the number of subdivisions
made within one cavity round-trip time (100 in our
calculations). The Stratonovich interpretation is used
to derive the integration algorithm including the influ-
ence of noise sources.

0 250 500 750 0
o

(b)

10" A=11S A=125

10" x M
10 l .
10* '

250 500 7%0 W0

Fig. 5. Power spectral density of ¢ for different values of A ir
deterministic (a) and stochastic (b) cases. Parameters are t
of Fig. 4. The vertical scale is the same for all graphs. exce;
the steady-state case (first graph in Fig. 5a). where the zero :
is explicitly shown. In this last case. an arrow the vertical
indicates the existence of a Dirac delta function at w =0.

Fig. 5a shows the power spectral density of the
tensity time signal for increasing values of A in
deterministic case (Dy = D =0). A period-doub
route to chaos is found. As can be seen by compa
this figure with the previous one, the smaller valu
A (A = 9.8) corresponds to a steady-state situa
(power spectrum is a Dirac delta function centere
w =0, whereas only non-zero frequencies are sh
in the plot). For the largest value of 4 (A = 1%
the broadband spectrum of a chaotic trajectory is
tained.
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Fig. 6. Comparison of the time evolution of the intensity and its
power spectrum short before and after the first bifurcation in '
deterministic (a) and stochastic (b) cases. Parameters are the
of Fig. 4.

The existence of a small noise source (Fig. 5b),
does not substantially modify the period-doubling sce-
nario after the first bifurcation has taken place (A >
Ac. Ac ~ 9.85 for the parameters chosen, correspond-
ing to the last three plots in each of Figs. 5a and
5b). A noisy background superimposed on the deter-
ministic spectral density appears. as expected. On the
other hand. the situation before the first bifurcation is
reached (first plot in each of Figs. 5a and 5b) shows
a radical change. A distinct peak in the power spec-
trum can be observed for a non-zero finite frequency
in the stochastic case, in contrast to the delta func-
tion of the deterministic case. This frequency is seen

0.06 -

|
o 004 - ..\

) .

0.02 -
; \ -
r—_—————— P ————— — - —— -~ ———

—

-

0.00 ¢

9.0 92 94 96 9.8

Fig. 7. Standard deviation of the intensity time series against con-
trol parameter A. The final jump corresponds to the first bifur-
cation in Fig. 3. A horizontal dashed line indicates the standard
deviation of the noise source. Parameters are those of Fig. Sb.

to be the same as that of the periodic attractor which
appears after the bifurcation. Fig. 6 demonstrates this
fact, by means of a comparison between the light in-
tensity time series and its power spectrum for the de-
terministic (Fig. 6a) and noisy (Fig. 6b) cases. The
main peak in both spectra coincide. as seen in Fig. 6b.
The oscillation amplitudes are however very different.
The fact that the oscillations are much smaller in the
first case (A = 9.80) than in the second (A = 9.90)
proves that this is not a mere advance of the bifurca-
tion caused by the noise. However. the amplitude in
the pre-bifurcation case is much larger than the noise
source variance would have us expect. We are hence
observing an amplification of noise fluctuations. which
takes place at the natural frequency selected by the
dynamics of the system. We note that the fluctuation-
enhanced peak observed here is of the same shape and
occurs at the same frequency as that which appears af-
ter the bifurcation; this behavior seems different from
that of the “noisy precursors” studied by Wiesenfeld
and others (see Ref. [16], and references therein).
A clear picture of the amplification of noise fluc-
tuations can be obtained by computing the standard
deviation of the intensity time series as the first bifur-
cation is approached. This is shown in Fig. 7. where a
horizontal dashed line indicates the value that is to be
expected from the real noise intensity which is being
handled. The amplification effect is plainly revealed.
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4. Conclusion

The main objective of this paper was to system-
atically derive the equations for the stochastic Ikeda
model of aring cavity with a nonlinear absorber. Spon-
taneous emission noise has been found to significantly
influence the dynamical behavior of the system. We
observe substantial amplification of noise fluctuations
before the steady state loses stability; this amplifica-
tion occurs at a natural frequency of the system.
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Abstract

The intracavity dynamics of optically injected ring lasers is studied by means of an extended delay-differential Ikeda
model. The behavior of this kind of lasers is, in some aspects, strikingly different from that of a nonlinear absorber placed in
a ring cavity. for which the Ikeda model was originally derived. In particular, chaotic behavior in the laser case is seen to
occur on much faster time scales than for the absorber. The scenario in which the transition to chaos occurs is also different.

© Elsevier Science B.V.

Injection of coherent light into laser systems has
been a common practice since the early years of the
laser era. The reasons for using such a technique are
diverse. At high injection levels. the laser locks its
frequency and phase to those of the injected signal;
this is called the injecrion-locking regime, and is
very useful for obtaining a stable and narrow-band
laser output at a desired frequency. On the other
hand. if the injected signal is not strong enough,
locking 1s not possible and a competition arises
between the two coherent signals which coexist in-
side the laser resonator, giving rise to a wide and
interesting variety of dynamical behavior (see Ref.
(1] for a general review on the subject).

In the present work, we are interested in the
chaotic regimes that frequently appear in a laser with
an injected signal, and in the transitions and instabili-

' Present address: Dept. de Fisica i Enginyeria Nuclear. E.T.S.
d’Enginyers Industrials de Terrassa. Univ. Politécnica de
Caualunya. Colom 11, E-08222 Terrassa. Spain.

-

ties leading to them. Much attention has been paid to
this problem in the past years [2-6), and evidence of
chaos has been obtained from both an experimental
and a theoretical point of view. Nevertheless, simi-
larly ro almost all investigations of laser dynamics,
thes: udies were done on time scales longer than
the ty round-trip time of the laser. For “‘typical”’
laser .ystems, such as semiconductor, gas. or
Nd:YAG solid-state lasers, this quantity usually takes
values in the range ~ 10 ps-1 ns, which places the
analysis of intracavity phenomena beyond the reach
of standard measurement devices. The recent devel-
opment of optical fiber lasers, mainly for communi-
cation purposes [7], has changed this situation. In
such lasers, the amplifying medium is an optical
fiber that has been doped with rare-earth ions.

The waveguiding properties of optical fibers en-
able the construction of lasers with very large (even
of the order of km) cavities, and hence with round-trip
times long enough (of the order of us) to be able to
observe their behavior inside the cavity [8]. The
question of analysing the intracavity dynamics of

0375-9601 /97 /S17.00 © 1997 Elsevier Science B.V. All rights reserved.
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lasers with an injected signal when operating in a
chaotic regime naturally arises. It is interesting to
investigate, for instance, if chaos occurs in time
scales faster than the cavity round-trip time, and if
this is the case, whether these time scales can be fast
enough to be interesting for encoding purposes [9,10]
in all-optical communication systems.

The intracavity dynamics of long-cavity erbium-
doped fiber lasers has been recently analysed by
means of a system of delay-differential equations of
the Ikeda type [8,11]. This model was first intro-
duced by lkeda to study the absorption of light by a
nonlinear medium placed in a ring cavity {12}, and
predicted the existence of chaotic behavior in this
system. This prediction was first tested in a passive
optical fiber ring [13], and became one of the first
examples of optical chaos. The Ikeda model has also
been occassionally used in a laser context by several
authors. In the few years following its appearance,
Otsuka and coworkers used it to describe the nonlin-
ear dynamics of a semiconductor laser amplifier with
delayed feedback [14,15]. Several years later, Loh
and Tang derived a delay-differential model, follow-
ing Ikeda. to analyse ultrafast polarization modula-
tion in semiconductor lasers [16.17]. Again. these
studies were done on time scales larger than the
cavity round-trip time of the system. It is our aim
here td compare the dynamical behavior of these two
versions of the Ikeda model, namely that correspond-
ing to a nonlinear absorber and the one used to
analyse laser systems. As we will show in what
follows, the time scales in which the second mode:
evolves correspond to nontrivial intracavity dynar
ics.

The Ikeda delay-differential model can be written
in dimensionless form as follows,

E(t) =VTE +RE(1- 1)
xexpla(l +ia)(o-1)], (1

deé(1)
ds

=q-¢—|E(1= 1)’

X {exp[2a( ¢ - 1)] - 1}. (2)

These equations describe the interaction between
light and a nonlinear medium (absorbing or amplify-
ing) placed in a ring cavity. E(r) is the complex
envelope of the electric field, measured at a given

reference point inside the cavity. ¢ is the total
population inversion between the two energy levels
of the nonlinear medium which interact with the
propagating light. Time is measured in units of /',
where 7, is the decay time of the atomic transition.
The delay 7, is the dimensionless cavity round-trip
time, i.e. the time the light takes to travel once
around the cavity, in units of the inverse of the
transition decay time 7,. E, is the amplitude of the
injected field, assumed constant. R is the return
coefficient of the ring (fraction of light that remains
in the cavity after one round-trip), and T=1—R.
The parameter a is the dimensionless detuning be-
tween the atomic transition frequency and the light
frequency. The coefficient a represents either ab-
sorption or gain, depending on whether we are study-
ing a nonlinear absorber or a laser, respectively °. In
this last case, the amplifying medium has to be
pumped, which is represented by the dimensionless
pump rate gq.

In the absorbing case (g = 0), this model has been
extensively studied both numerically and analytically
{18-21). In particular, Kaiser and coworkers [19.21]
numerically obtained the bifurcation structure of the
system for several sets of parameters, displaying
different routes to chaos for round-trip times of the
order of the transition decay time (i.e. for 7, of
order 1). Otsuka used similar time scales in his study
of semiconductor lasers with optical feedback [15).
We, on the other hand, are interested in another
region of parameter space, where the round-trip time
is several orders of magnitude smaller than the tran-
sition decay time (in fiber lasers, the difference can
be of 5 orders of magnitude [11]). Throughout this
paper, we will consider 7, = 0.01.

We have numerically integrated Egs. (1), (2) to
obtain the bifurcation structure of the Ikeda model
with and without pumping in the (a, a) space. The
result is shown in Fig. 1, for R =0.95. r, = 0.0l
and E; = 5.0. The pump rate is ¢ =0 in Fig. la and
g =S5 in Fig. 1b. The influence of pumping is evi-
dent. When g = 0, the situation is qualitatively simi-
lar to that reported in Ref. [21], with islands of

* We choose a to be always positive, so that it is the sign of the
population inversion ¢ what makes the medium absorbing or
amplifying.
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periodic behavior embedded in a chaotic back-
ground. When g # 0, on the other side, this scenario
changes drastically. First, the fixed point loses stabil-
ity at smaller values of the detuning (compare the
x-axis scales in Figs. 1a and 1b). Second, the insta-
bility threshold is virtually independent of the gain,
and leads almost immediately to the chaotic regime,
so that the transition to chaos is much sharper now.
Third, there are no islands of periodic behavior in the
chaotic regime. A comparison between typical routes
to chaos in both cases is presented in Fig. 2. The
system parameters are the same as in the previous
figure. Fig. 2a corresponds to a slice of Fig. 1a at
a= 3.5 for increasing values of a, starting shortly
after the fixed point loses stability, and clearly shows
a period-doubling sequence leading to a chaotic at-
tractor of annular shape. The situation is again very

(a) 10.0

0.0
5.0 7.5 10.0

15 275 4.0
a/r

Fig. 1. Phase diagram of the delay-differential model presented in
Egs. (1), (2). The parameters are: E; =50, R=0.95 and 75 =
0.01. (a) g =0, (b) g = 5.0. White regions correspond to fixed-
point dyramics, black regions to chaotic behavior, and the differ-
ent grey areas represent periodic motions with different repetition
rates. The period of the motion is represented by the numbers
shown in the figure. Different superscripts correspond to qualita-
tively different penodic orbits.
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Fig. 2. Time series (left) and attractor in complex-£ space (right)
for different values of a as the system goes from a fixed-point to
chaos without (a) and with (b) pumping. Parameters are those on
the previous figure and a = 3.5. The values of a /7 are. from top
to bottom: (a) 6.25, 7.00, 8.00, 8.05, and 8.50; (b) 2.29, 2.31.
2.34, 3.00, and 6.00.

different in the presence of pumping (Fig. 2b), with
periodic behavior in a very narrow band of a values
separating regions of fixed-point and chaotic behav-
ior. In the periodic regime, the attractor is similar in
shape to that of the absorbing case, whereas in the
chaotic region, the attractor fills all the space inside
its boundaries, and covers a much larger region of
phase space. It should also be noted that the time
scale for the chaotic dynamics is much faster in the
laser case than it is in the absorber case. Taking into
account that the round-trip time is 0.01 in both cases.
it can be seen from Fig. 2 that the system exhibits
intracavity chaos for g # 0, but not for ¢ = 0, where
variations in the intensity, although chaonc occur in
a time interval larger than 7.
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Fig. 3. Two time series (top) and their corresponding power
spectral densities (bottom) with and without pumping. Parameters
are those of the previous figure, and a /7 = 8.60. (a) ¢ = 0.0; (b)
g=5.0.

In order to further investigate and corroborate the
existence of different time scales in the two different
chaotic dynamics observed so far, it is also useful to
analyze their respective power spectral densities
(PSD). A comparison between these functions for
typical time traces in the two chaotic regimes (with
and without pumping) is shown in Fig. 3. The exis-
tence of much higher frequencies in the laser case
(Fig. 3b) as compared with the absorber case (Fig.
3a), can be easily observed in the time-domain repre-
sentations (upper plots), and is quantitatively de-
scribed in the frequency domain (lower plots). The
PSD is seen to be much broader for ¢ # 0. This

difference corresponds to several orders of magni-
tude (cf. the scales of the frequency axis in both
cases).

Finally, we now address the question of whether
the faster dynamics observed in the laser case corre-
sponds to a higher dimensional motion. This seems
to be suggested by the differences in the chaotic
attractors shown in Fig. 2. We can estimate the
dynamical dimension of the two systems by using a
phase-space reconstruction method (22] and comput-
ing the percentage of false nearest neighbors as we
increase the dimension of the space in which the
intensity time series is embedded. To perform this
calculation we make use of a method developed in
Ref. [23). False nearest neighbors are points in phase
space which seem to be nearby only because the
dynamics has been embedded in a space of too low
dimension. They can be revealed by increasing the
dimension of the space in which the dynamics is
trying to be reconstructed. In this way, when the
percentage of false nearest neighbors (with respect to
all points in the attractor) drops to zero beyond a
given dimension, we can expect that the phase space
has been correctly reconstructed. The minimum di-
mension for which this happens constitutes a mea-
sure of the dynamical dimension of the system. Fig.
4 shows the percentage of false nearest neighbors vs.
increasing dimension of the embedding space for the
Ikeda model, both with and without pumping. As can
be observed in the inset, the embedding dimensicn in
the pumped case (circles) is equal to 4, and coincides
with that of the ‘*‘classical’’ Ikeda mode! for an
absorber, i.e. for no pumping (diamonds).

Faise Nearest Neighbors (%)

ing ion

Fig. 4. Percentage of false nearest neighbors versus embedding
dimension for the time traces shown in Fig. 3.
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In summary, we have analysed and compared the
dynamics of the delay-differential Ikeda model for
an absorber and a laser with long cavity. The phase
diagrams of the two systems display fixed-point,
periodic and chaotic behaviors, and in the periodic
regime the time scale seems to be similar in both
systems. This is not the case in the chaotic regime;
here, the time scale for intensity fluctuations is still
long for the absorber, but much faster for the laser.
In this last situation, the dynamics is chaotic within a
single cavity round trip. In spite of the different
frequencies involved in the two cases, both systems
seem to have equal dimensionality, as shown by a
false nearest neighbor analysis. The transition be-
tween the regions of ‘‘slow’’ and “‘fast’’ dynamics
can be seen not to be discontinuous at g = 0. On the
contrary, the standard, ‘‘slow’’ behavior can be ob-
served for a finite range of g values up to a given
threshold, beyond which the fast regime appears.
This bifurcation might correspond to a jump towards
a higher branch of the multistable system. Further
research, both numerical and analytical, is needed in
order to clarify this point. The existence of intracav-
ity chaotic dynamics for lasers with a long cavity,
such as optical fiber lasers, might be important for
chaotic encoding of information at frequencies in the
GHz-THz range, in all-optical communication sys-
tems. In this sense, it would be of interest to analyse
how a time variation of the injected signal (the
message to be encoded, for instance) would affect
the scenario presented here.

We thank Henry Abarbanel for making available
to us the software on the false nearest neighbors
method. J.G.O. acknowledges financial support from
the Direccién General de Investigacién Cientifica y
Técnica (Spain) and the Office of Naval Research

(USA). R.R. acknowledges support from the Office
of Naval Research and the National Science Founda-
tion (USA).
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The Nd:YAG laser with an intracavity second harmonic generating crystal is a versatile test bed for concepts
of nonlinear time series analysis as well as for techniques that have been developed for control of chaotic
systems. Quantitative comparisons of experimentally measured time series of the infrared light intensity are
made with numerically computed time series from a model derived here from basic principles. These com-
parisons utilize measures that help to distinguish between low and high dimensional dynamics and thus
enhance our understanding of the influence of noise sources on the emitted laser light. '

[S1063-651X(97)10805-4]

PACS number(s): 05.45.+b, 42.50.Lc, 42.65.Sf

L. INTRODUCTION

The Nd:YAG (neodymium doped yttrium aluminum gar-
net) laser with an intracavity KTP (potassium titany! phos-
phate) crystal is a chaotic dynamical system for which it is
possible to directly compare statistical aspects of measured
time series with predictions from a numerical model that has
been derived from basic theory. When operated with three or
more longitudinal cavity modes, this laser is known to dis-
piay chaos, and attempts have previously been made to write
dynamical equations that could capture certain aspects of ob-
served behavior [1-3]. These models have successfully pre-
dicted the existence of antiphase dynamical states, energy
sharing of chaotic polarization modes of the laser, and also
the possibility of obtaining stable operation through rota-
tional orientation of the KTP and YAG crystals. The laser
system has also served as an example of which algorithms
for the control of chaotic lasers have been successfully ap-
plied, both experimentally and in numerical simulations
[4-7].

It was, however, the observation that simple control algo-
rithms failed in centain operating regimes that motivated us
in a previous paper to apply methods of nonlinear time series
to experimentally recorded intensity time series with the goal
of discovering qualitative and quantitative differences in the
operating regimes. The laser was thus operated specifically
in three longitudinal modes in two polarization configura-
tions by caréful adjustment of crystal orientations in the cav-
ity. In the first configuration, all three longitudinal modes
were polarized parallel to each other. In the second, one
mode was polarized orthogonal to the other two. All other
parameters of the laser system such as the cavity loss, pump
level, etc. were maintained constant, and the instrumentation
for the measurements was operated with exactly the same
sampling times and other settings.

The dynamics observed in these two polarization configu-
rations were labeled type I and type II. Nonlinear time series
analysis allowed us to determine the dimensionality of the
chaotic attractors for the two cases and estimate the
Lyapunov exponents in the two cases. A major conclusion of

1063-651X/97/55(6)/6483(18)/$10.00 . 55

our previous study was that while the type I behavior was
established to be low dimensional, there was clear evidence
that the type II behavior was significantly influenced by
noise, indicating the presence of high dimensional dynamics
as well. At the end of that paper we sketched the outline ot a
theoretical approach to the derivation of a model that would
allow us to simulate intensity time series and apply the non-
linear analysis techniques to make a direct comparison with
the experimental results.

In this paper we present the derivation outlined in [8]. and
obtain the equations that describe the dynamics of a three
mode laser with an intracavity KTP crystal. Previous models
[1-3] were found not to reproduce type I dynamical behavior
after conducting extensive searches in parameter space. It is
shown here that the inclusion of nondegenerate four wave
mixing, which leads to a model that includes the phase dy-
namics of the electric fields, overcomes this difficulty. Type
I behavior of the infrared light has very different character-
istics, and is accompanied by emission of substantidl
amounts of green light, in contrast to type I dynamics. De-
generate four wave mixing is the dominant process in this
case. A major purpose of the research reported here 1 to
include noise sources appropriately in the numerical equa-
tions and to explore their influence on type I and type I
deterministic chaotic dynamics.

The next section reviews the main aspects of type | and
type II chaotic dynamics of the laser. The experimentally
observed differences (time series behavior, controllability,
mode structure, and green output power) are summancd.
We describe a noise measurement method called false near-
est neighbors, an algorithm normally used to find the embed-
ding dimension of a chaotic time series. We demonstrate that
the two types of dynamics differ significantly in the amount
of high dimensional (noisy) dynamics of the laser. Section 11
provides the basis for comparison with numerical computa-
tions that are the focus of this paper.

Section III contains a derivation of the model equations of
motion from a Hamiltonian. Three infrared cavity modes are
modeled as harmonic oscillators coupled to heat baths. A
mode that represents green light generated by the KTP crys-

6483 © 1997 The American Physical Society
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tal is also included. It is nonlinearly coupled to the infrared
modes so as to model the interaction in the KTP crystal. The
cavity loss for the green light is very high compared to that
for the infrared modes, hence it is sufficient to just consider
a single mode of green light and to eliminate its dynamics
from the final set of equations that describe the evolution of
the field amplitudes of the infrared modes and of the popu-
lation inversion of the two level atoms that drive them.

In Sec. IV we describe the results from numerically inte-
grating the equations of motion derived in Sec. III. There is
a qualitative match between the wave forms of the model
and experimental data in both chaos regimes. We also
present the false neighbors results when noise is added to the
system and find that the resulting noise in the output inten-
sity differs in the two chaotic regimes for the same input
noise. leading us to conclude that the susceptibility of the
dynamics to noise differs for the two chaotic behaviors.

Section V attempts to locate the source of noise that is
seen in the laser time series. Four intrinsic quantum fluctua-
tion sources (cavity loss of infrared light, cavity loss of green
light, intrinsic conversion noise, and spontaneous emission)
are analyzed for their expected noise levels. These noise
sources are all too weak by many orders of magnitude to
contribute the amount of noise evidenced in the laser dynam-
ics. We also consider and eliminate extrinsic pumping fluc-
tuations as the noise source.

1L TYPE I AND TYPE II BEHAVIOR

The basic elements of the laser system are a diode laser
pumped Nd:YAG crystal and an intracavity KTP crystal with
an output mirror that is highly reflecting at the 1.064 um line
of the Nd:YAG crystal but highly transmitting for the green
light [1]. It has been shown that this laser can be configured
so that few modes (=3 — 10) are present in the cavity; each
mode can have one of two polarizations.

Using the methods of nonlinear time series analysis [8]
we are able to distinguish between chaotic behavior where
the noise level is very low and situations where the output is
still chaotic but substantial noise is also present. The former
we call type I chaos; it is observed when all three modes all
polarized parallel to each other. The latter we label type 1l
chaos; it is observed when one of the three modes is polar-
ized perpendicular to the other two. Very little green light is
generated for type I behavior, which is demonstrably low
dimensional chaos. and is controllable by the method of oc-
casional proportional feedback (OPF) [4,5]. Type II chaos is
accompanied by the generation of a substantial amount of
green light and a clear signature of noise is evident in its
chaotic dynamics. It is typically not controlled by OPF.

The laser system displays chaotic intensity output when
operated with three or more longitudinal modes. In the
present experiments the system parameters were adjusted to
obtain three mode operation in the two distinct polarization
contigurations. An appropriate orientation of the crystal axes
allowed us to select these configurations. The pump level, set
to about twice the threshold pump power, was similar for the
two configurations. The total intensity (the sum of the inten-
sities of each individual mode) was observed with a photo-
diode having a rise time of less than | ns and was sampled
using a 100 MHz eight bit digital oscilloscope capable of
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FIC . {a) Fluctuations of the total infrared intensity for three
mode Nd:YAG laser operation with all modes polarized paralle! to
each other. Relaxation oscillations of period ~16 us are evident
with irregular modulations of the envelope, typical of type I dynam-
ics. (b) Fluctuations of the total infrared intensity for three mode
Nd:YAG laser operation with two modes polarized parallel to each
other and one polarized perpendicular to the other two (type II). The
relaxation oscillations are still visible.

storing 10° samples. In Fig. 1(a) we show the total intensity
when all three modes are polarized parallel to each other
(type I chaos). In Fig. 1(b) we show the total intensity with
one mode polarized perpendicular to the other two (type Il
chaos).

In the time traces we can see the distinction between these
two operating regimes. Type I consists of long *‘bursts’” of
relaxation oscillations, while type II appears far more irregu-
lar. During type I operation very little green light, less than |
©W, was observed, while more than 25 uW of power in
green light accompanied type II activity.

We use the total laser intensity I(n)=I(to+ n7,), with the
sampling time 7,=100 ns, and its time delayed values to
reconstruct the system phase space {9-12] by forming vec-
tors

y(m)=I(n),[(n+T), ... I(n+(deg~-1)T). (1)
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Yin+D)=(n+1)I(n+1+T),... I(n+(dg—1)T+1))

()

where dg is the integer embedding dimension of the recon-
structed phase space and T is the integer time lag in units of
7,. Our ability to use this phase space reconstruction for
extracting physical properties from the observations rests on
a proper choice of the time delay T and the embedding di-
mension dg. For T we use the first minimum of the average
mutual information [9,10,13] between I(n) and I(n+T)
evaluated as a function of T.

dg is chosen by using the false nearest neighbors algo-
rithm [14.9,10]. This relies on the property of autonomous
dynamical systems that their trajectories in phase space do
not cross each other unless the system is observed in a space
with too low a dimension. To determine the d necessary to
unfold the trajectories using time delay coordinates we ob-
serve each point along the trajectory y(n) and its nearest
neighbor as the dimension of the space is increased from
dg to dg+ 1. If the point and its nearest neighbor move suf-
ficiently far from each other as the dimension is increased,
we conclude they were falsely seen to be nearest neighbors
because of projection from a higher dimensional object, the
attractor. When the percentage of false nearest neighbors
drops to zero. we have established the value of d; . Here, we
use the property of the algorithm that in the presence of noise
[9.10], a residual percentage of false nearest neighbors is
observed. The amount of residual is a measure of the noise
level.

The original data sets of 10° points were oversampled.
These were down sampled by a factor of 8, resulting in
125 000 data points. Using the time delay suggested by the
average mutual information, we evaluated the percentage of
false nearest neighbors for types [ and II chaos. This percent-
age averaged over five type I data traces is shown in Fig. 2(a)
(solid line) and enlarged in Fig. 2(b). We see that dg=5
where the percentage of false nearest neighbors drops well
below 0.5%. The dotted lines in Figs. 2(a) and 2(b) represent
the corresponding average over four type II data sets. In
these data it is clear that there is a residual number of faise
neighbors that is not eliminated by going to higher embed-
ding dimensions. We have consistently observed this much
larger fraction of residual false nearest neighbors for type I
dynamics compared to type I dynamics in the many time
series of total intensity from our laser system. In fact. the
mean type Il residual is ~40 times the mean type I residual
at dE =6.

Table I contains a summary of the differences between
type I and type II chaos as found from experimental mea-
surements and from the nonlinear analysis of the data.

IIl. MODEL OF THE PROCESS

The laser is modeled using three interacting components:
the infrared cavity modes. a green cavity mode. and a two
level active medium. We write the whole Hamiltonian as

H=HIR+Hgncn+Hconv+Hllevcl+Hdm‘mg' (3)

(a)
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. FIG. 2. (a) The percentage of false nearest neighbors (FNN) vs

the embedding dimension dg averaged over five type I chaotic data

sets (solid line) and four type II chaotic data sets (broken line). tb)
An enlargement of (a) showing that the percentage of type I FNN
drops to 0.1% and stays there as d increases but the percentage of
type II FNN does not drop below 4%.

H .on, models the conversion of IR to green and vice versa
that occurs in the KTP crystal, and H y;yin, models the inter-
action of the two level system with the infrared cavity
modes.

The longitudinal infrared normal modes in the laser are
represented by the annihilation and creation operators a,, and
a,, respectively. These satisfy the usual equal time Bose
commutation relations

TABLE L. Type I and type II chao§ summary.

Characteristic Type | Type Nl
Time series Bursting lrregular
Green output <l uW 225 uW
Mode configuration 3-0 2.1
OPF controllable Yes No
Embedding dimension =5 =3
False neighbors residual <1% =3¢
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(a, 'a;]-’:

For us, M =3.

Each mode is coupled to independent heat baths or reser-
voirs which are represented by boson operators b, for the
kth reservoir mode of infrared mode i. This harmonic oscil-
lator has a frequency of (),,. We assume that all of the
reservoir modes are independent of each other and the infra-
red modes (except through the coupling), that is

[bqn ’ ] mn pq (5)

Omn» nm=12,... .M. 4)

and

(bpn.al]=0. ©)

The reservoir modes are bilinearly coupled to the infrared
modes with real coupling constants I';;, which leads to

M M
H1R=Zl ﬁw.-a?a.-+2l ; (RQ,blbu

+ihT y(bual —aibly)). @)

There is a single green mode represented by annihilation and
creation operators g and g' that satisfies

(e.8"]=1 (8)

and
[g.al]1=0. 9)

It is bilinearly couplea (via real coupling constants I';;) to a
reservoir that is independent of the infrared mode reservoirs.
The kth reservoir mode of the green mode is represented as
bg,‘ and has a frequency of (,,. The green mode Hamil-
tonian is

Hm=ﬁw8g*g+§ (AQb! b

+ihT o (bog’—gbl )] (10

In the KTP frequency conversion process, modeled by
H ., , conversion occurs when two infrared photons are de-
stroyed to create a green photon and when one green photon
is destroyed to create two infrared photons. We assume the
coupling tenSor «;; is real and symmetric:

M

Hcm,v=ffz,,‘>.“.l xi(alalg—gta;a)). a1
ij=

The laser driving system is represented by a distribution of
spin-1/2 systems along the z axis over the length of the laser
cavity. The Pauli spin operators S3(z,t) and S.(z.t) are
used to represent the two level systems and satisfy

[S3(2).5.(2")]==285.(2)8(z-2") (12)
and

[S:(2).5.(2")]=S83(2)8(z=2"). (13)

LIU, ROY, ABARBANEL, GILLS, AND NUNES S5

In addition, it can be shown that
$+(2)S3(2)=+FS.(2)6(z=2"),

S+(2)S_(2")=5[1+5:(2)18(z~2"). (14)

The two level system is damped by a cavity mode reservoir
represented by boson operators b,; and b!,. The Hamil-
tonian is

Liw, )
Hjev= L [Tss(z)'*‘; (AT 1 (2)S 4 (2) by

—ihl*(2)bl,S_ (Z)]ldz'*‘z AQbliby.

(15)

The coupling between the medium and the cavity modes is
bilinear and the driving efficiency o; is assumed to be real:

L M
Hdn'ving=fo iﬁzl oi[S +(2)a;sin(K;2)
—a!S_(z)sin(K,z)]dz. (16)

A derivation of the equations of motion for this system
can be found in the Appendix. Here we give an overview of
the physics of the model and the approximations that are
made in the derivation.

First we use the Hamiltonian to determine the standard
Heisenberg equations of motion for the system. The reservoir
model allows us to apply the Wigner-Weisskopf approxima-
tion (see Appendix and Chap. 19.2 of [15]) to write a Lange-
vin equation for the green mode:

dg M
d‘ (73+“"g)g 2 Klmalam

-2 T b gi(0)e ™ Be, (17)

where y, represents the damping rate and the last term is a
fluctuation or noise term. Integrating this equation and taking
advantage of the fact that the decay rate y, (~10'"Hz) is
much faster than the characteristic rate at which g fluctuates
(10° Hz), we can find an equation for the green mode:

| M
8= 2 Kinaantn,, (18)
Vg im
where 7, is a dimensionless fluctuation term

rgkbgk(o)

=i} 1
-——:—_—e gk . (19)
T Ygti(w,— Q)

M=~

The green mode is seen here to be ‘‘slaved’ to the infrared
dynamics; namely, g(¢) is determined solely in terms of the
infrared modes and fluctuations associated with its coupling
to the external world. The use of a single green mode opera-
tor is justified as the green light escapes from the laser cavity
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and its dynamics is not observed. In what follows, we shall
see it acts as a damping factor, and the detailed mode struc-
ture is not important.

We do the same with the infrared reservoir and infrared
equations of motion and substitute in the green evolution
equation to get

dA; 2 ¥
—— ey A - . t
dt ‘YIAI ,yx j.l.§=l KUKIMA/AIAM
M
* 2121 A} Usei(wi+wi)'+ e’
L .
- fo ofe'*'S_(z)sin(K z)dz. (20

The noise (7, and 7,) and damping ('y; and ¥g) can be
related through a fluctuation-dissipation relation, which we
derive in a later section.

Now we tum to the two level system equations of motion.
Although the Nd:YAG laser is actually a four level system,
this model works well for determining the equations of mo-
tion. It fails when computing the spontaneous emission noise
power, so we compute this power in another way. In the
meanwhile we will ignore all noise contributions from the
two level system.

The equations of motion are found again, and we formally
integrate the reservoir operators, substitute tiem into the
S5 +(z) equation of motion, and make the Langevin approxi-
mation to get

ds.(z) )
7 = (T Y%t ie)S () + 7,(2)85(2)
M
—El o¥a;Sy(z)sin(K;z). @n

At this point, we note that the Nd:YAG laser is a class
B laser and its polarization decay rate is much higher than
75 because the polarization of the active medium is affected
by the surrounding crystal lattice. For Nd:YAG, y; Vis ap-
proximately 240 us. The actual polarization decay time
y, ' is on the order of 107! s,

So we substitute the faster decay rate ¥, for v, and ignore
the associated fluctuations.

In the interaction frame moving at the driving frequency
w4 we find that the driving terms are slaved to the population
inversion S3(z) due to the high polarization decay rate. In a
way similar to the method used to determine the green mode
equation of motion we determine the driving terms to be

1 & .
S.()=—— 2 a',-afe"“'d’sin(l{,-z)S;;(z), (22)

pi=1

$3(2) ok

Yp i=

S_(z2)=-

o.a;e'“dsin(K;z). (23)
1

We now take the S3(z) equation, substitute the reservoir
solutions, and perform the Langevin approximations.

ng(Z)

— o =2A- 27,1+ 55(2)]-2(S . (2) 7}(2)

M
—r/,(z>s-<z>]+z_.$_,‘l o[S.(2)a

+a]S_(z)]sin(Kz). (24)

A constant population inversion 2A has been added to ac-
count for optical pumping. Further manipulations and asso-
ciating the operator S3(z) with the population inversion
n(z), we find and equation for the population inversion of
the laser,

dn(s) __ 1 ‘R
dt —‘;f[n(z)—r?]-n(z)gl 47—PA,-A,»sm (K.2).

125)

where 7; is the fluorescence decay time of the Nd:YAG me-
dium (240 us) and 7" is the mean population inversion.

After substituting the driving terms into the field equation
we get

M
dA; 2
=T YA T . t
at v Vs j.l,;-l KijKimAjAiAm
M
+22 A; ﬂxei(“’i*“‘j)’+ meiwif
Jj=1
o L,
+ N‘y 0 Sin (Klz)n(z)dZA,. (26)
P

We ha = identified n(z) here. At this point we recall that the
numt  f photons in the cavity is large (10°) and treat the
quar  mechanical operators A; and A as if they are ¢
numbers.

Since we now have a partial differential equation for
n(z), we break this equation into the component normul
modes as described in detail in [3]. To do this, we define a
mode gain G; as

—2¥0',-'27".

L
G;= Ny, fon(z)sinz(K,-z)dz. 27

where 7. is the round trip cavity time of the laser (0.2 ns.
Assuming that n(z,t) separate into time and space compo-
nents we can write down equations for the mode gains in-
stead of the population inversion. After rescaling the equa-
tions so that the electric field has measurable units we obtuin

M
dE; 1 ]
— o o~ E . - . * |
- —-Iz 1 (Gim @) ‘;.k.z:"-. CilimE} EiEn)

M
. flwd
+2M2l iE gt witety Ve
= c

(28)

M
dG; 1 )
—-l= , — . . 2
— —JT pi G,(HJ; By|E)] l (29)
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At this point we make use of an earlier model of the laser

3k
dE,

27:_1=(Gi—ai)Ei-€glEilei-252 wui|EjI*E;,
j#i
(30)
dG, il
Tf—d‘t"=p,'—G,'( l+’2| BijIEjlz)' (31)

where ;=g if the modes are parallel polarized and
u;j=(1—g,) if the modes are orthogonally polarized. These
values of u;; have been determined in [3] after consideration
of the phase-matching conditions for the intracavity KTP
crystal in the presence of the polarized modes of the laser
field. Notice that Eq. (30) is a special case of Eq. (28) having
the terms where i=k and j=I (or i=/ and j=k). This is
called degenerate four wave mixing. Matching coefficients in
the degenerate case, we find that {;;= \/Z when modes i and
j are parallel polarized and {;;=v1—g, when they are per-
pendicularly polarized.

We expect that the degenerate and nondegenerate four
wave mixing rates differ in the different laser configurations.
Type I chaos exhibits nondegenerate four wave mixing with
little, if any, degenerate four wave mixing. This implies that
the green photons never have a chance to leave the cavity
before being downconverted to infrared again. The opposite
is true for type II chaos where the green photons immedi-
ately leave the cavity. In order to separate these two cases, it
is necessary to define a four wave mixing tensor €;;,; where

€ijly ifi=kandj=I
€nl €lijl ifi=land j=k 32)
€,{ij{u otherwise.

Here, €, is the degenerate four wave mixing rate and €, is
the nondegenerate four wave mixing rate. We see that Eq.
(28) is a special case where the two rates are identical while
Eq. (30) is the case when there is only degenerate four wave
mixing and no nondegenerate four wave mixing.

The equations we numerically integrate are

dE; 1 l
t ’
T E{(Gi_ai)si—j'gnl €ijuE] ExEi|+ i,

(33)

dg; 1 -

In these equations i = 1,2,...,M. We have lumped all of the
noise terms into the single additive noise term n;. This is
possible because the multiplicative noise in Eq. (28) is much
smaller than the additive noise (see below).

We use the parameters shown in Table II. ¢, is the four
wave mixing efficiency in inverse watts and has a magnitude
on the order of 10 ™3 W ~!, It depends on the mode configu-
ration and the relative orientations of the Nd:YAG and KTP
crystals. B, is the cross saturation parameter between modes
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TABLE II. Model parameters.

Parameter Value Description
T 0.2 ns Round trip
cavity time
7y 240 us Fluorescence decay time
of Nd:YAG
a 0.01 Cavity loss factor
€ijki See Tables Il and Tables IV Four wave mixing
efficiency
Pi 0.02 Pumping power
By See Tables I and IV Cross saturation
parameter

i and j in units of inverse watts. These values are different
for type I and type II chaos and are discussed below.

IV. NUMERICAL INTEGRATION RESULTS

These model equations were numerically integrated using
a standard stiff integrator from the Los Alamos CLAMS li-
brary with a time step of 100 ns. The reservoir noise 7, was
simulated by adding a complex Gaussian offset with a van-
ance of 10™* W to the electric field of each mode between
integration steps.

Type I behavior is obtained in numerical integration when
all modes are polarized in the same direction and no nonde-
generate four wave mixing is present, as shown in Table IIL

The absence of degenerate four wave mixing is consistent
with the experimental absence of measurable green output.
Figure 3(a) shows a type I time trace obtained by numerical
integration of the equations. The bursting behavior and the
relaxation oscillation period echo the experimental type I
data in Fig. 1(a).

An approximation to type II behavior is obtained when
degenerate four-wave mixing dominates over nondegenerate
four-wave mixing as shown in Table IV.

Note that the factors {; in (32) are all equal regardless of
whether mode i and mode j are parallel or perpendicular.
The predominance of degenerate four wave mixing 1s con-
sistent with experiment; with type II behavior we observe a
high amount of green output. An example of a type il ime
trace obtained from numerical integration is shown in Fig.
3(b).

A. Data preparation

In our previous paper (8] we discussed the digital signal
processing methods we used to extract more resolution from

TABLE IIL Type I model parameters.

Type I chaos
Parameter Condition Value
€ijkl i=kand j=1 ow™
i=land j=k ow™!
Otherwise 21x1070w-!
Bij i=j low™!
i®j 06wW-!
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FIG. 3. (a) Numerically integrated type I intensity time series
with all modes polarized parallel to each other and no degenerate
four-wave mixing. (b) Numerically integrated type II intensity time
series with two modes polarized parallel to each other and one
polarized perpendicular to the other two and no nondegenerate four
wave mixing.

our data acquired using an eight bit sampling oscilloscope.
The resolution affects the local false neighbors and the
Lyapunov exponent calculations so in order to use these
tools to compare the experimental data and the numerical
model, it was necessary to perform the same manipulations.
In summary, the numerical model was integrated for 10°
points with a time step of 100 ns, matching the maximum

TABLE 1V. Type Il model parameters.

Type II chaos
Parameter Condition Value
€ijul i=kand j=1 1073w
i=land j=k 10-°w-!
Otherwise ow~!
B, i=j 1low™!
i#j 085 W!
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storage capacity and the sampling time of the oscilloscope.
The data were then quantized to eight bits. For the false
nearest neighbors test and the average mutual information
calculation, the data were down sampled by a factor of eight,
that is, seven out of every eight samples were thrown out.
This leaves 125 000 points at a sampling rate of 1.25 MHz
(7,=800 ns). The down sampling preserves the broadband
noise level.

For the local false nearest neighbors test and the
Lyapunov exponents, the quantized data were interpolated
using a digital linear filter. This filter is designed to remove
frequencies from 500 kHz to the Nyquist frequency
fs/2=5 MHz and pass all frequencies below 500 kHz. This
was needed to get higher resolution from the experimental
data traces. In order to match our results, we did this with the
numerical traces as well. After performing the interpolation.
the data were also down sampled by a factor of 8, leaving
125 000 points at a sampling rate of 1.25 MHz (800 ns).

B. Power spectrum

When we compare the power spectra of the numerical
results and the experimental data, we find similarities. Figure
4 shows the power spectra for the experimental data [Fig.
4(a)] and the numerical data [Fig. 4(b)] for type I chaos. The
peaks and their structure are very similar. Figure 5 shows the
same information for type II chaos. Here, it is not clear from
the spectra whether the type II chaos is well modeled.

C. Average mutual information

The average mutual information of the model is strikingly
similar to the experimental data. Figure 6(b) is the average
mutu. nformation as a function of time lag for the numenri-
call*  >grated model for type I chaos, and has essentially
the »....c shape as the average mutual information function
of the experimental data [Fig. 6(a)]. Note that the relaxation
oscillation time is slightly different between the model and
the data, however, this can be adjusted with a small change
in the pump power.

The average mutual information function for type II chaos
is also very similar between model and experiment as shown
in Fig. 7. Again, the relaxation oscillation time can be refined
by changing the pumping power.

D. False nearest neighbors

When we examine how the model dynamics respond to
noise using the false nearest neighbors algorithm, we find
that the type I dynamics tend to suppress noise while the type
IT dynamics do not. Figure 8 shows the false nearest neigh-
bors results for the numerically integrated time traces
(125 000 points) for both types of dynamics, with and with-
out reservoir noise. It is clear, especially in Fig. 8(b) that
when no noise is present, both type I and type II dynamics
exhibit low-dimensional behavior with almost no residual.

When Gaussian noise (0=0.01|€,omnal) is added to the
electric field for every integration time step of 100 ns, we
find that type I dynamics have no residual. or in other words.
the reservoir noise has been suppressed by the dynamics.
However, in the type II dynamics, the residual is around 5%.
which indicates that the dynamics have been significantly
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FIG. 4. (a) The power spectrum of the type I experimental data
shown in Fig. 1(a). (b) The power spectrum of the numerically
integrated time series shown in Fig. 3(a) (type I chaos).

affected by the reservoir noise. These findings are numeri-
cally consistent with our observations. When we normalize
the noise levels using the maximum amplitude of the type I
and type II time series, we find that type II is three times
more susceptible to noise than type L.

E. Local false nearest neighbors

We also performed a test called local false nearest neigh-
bors on the numerical data [8]. This is used to find the local
dimension, or number of equations of motion of the system
that generated the data. The results for type I chaos are
shown in Fig. 9. For the experimental data [Fig. 9(a)] the
predictability of the data has become independent of the
number of neighbors and the embedding dimension. We find
that numerical results [Fig. 9(b)] match well; both sets have
a local dimension d; =6 and the same fraction of poor pre-
dictions. For type I chaos (Fig. 10) the match is not so
good—the fraction of poor predictions is different by a factor

of 2 and the local dimension appears substantially smaller for
the model than for the expenment.
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FIG. 5. (a) The power spectrum of the type I. experimental data
shown in Fig. 1(a). (b) The power spectrum .~ the numencally
integrated time series shown in Fig. 3(b) (type [ :haos).

F. Average local Lyapunov expnaments

The average local Lyapunov exponents =natched well be-
tween the model and experimental type . =—mces. These are
computed using the methods described = [8]. Figure 11
shows the average local Lyapunov expome=ss for the experi-
mental type I data [Fig. 11(a)] and numes=_zal model type I
data [Fig. 11(b)] using dg=7 and d;=7. <wpure 12 showsa
closeup of these graphs. Note that in bows zases, there are
two positive Lyapunov exponents and a ===p exponent. The
negative Lyapunov exponents are sligt:~ larger for the
model dynamics. It is likely that a smail. —arameter change
can improve the match.

For the type II data, the match is not <~ good. Figure 13
shows the average local Lyapunov expooxses for the experi-
mental type 11 data [Figure 13(a)] and tox umerical model
type II data [Fig. 13(b)] using dz;=7 and .. =7. Figure 14is
a closeup of these graphs. The experimes:z=_ data have three
positive Lyapunov exponents while the zi-—n=rical model has
2. The largest Lyapunov exponent fren: e experimental
data exceeds that of the model by a fact>-  of two. We con-
clude that the model of type Il dynamics s not match the
experiment well.
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FIG. 6. (a) The average mutual information as a function of time
lag for the experimental time series shown in Fig 1(a) (type I
chaos). The time lag is given in units of 8/100 MHz or 800 ns. (b)
The average mutual information as a function of time lag for the
numerically integrated time series shown in Fig. 3(a) (type I chaos).

Table V gives the average Lyapunov exponent values for
L=2048, which is a good approximation of the global
Lyapunov exponents for the experimental data and the model
data. From these numbers, it is clear that type I chaos is
modeled well, while type II chaos is not.

V. NOISE SOURCES

In an attempt to determine the source of the noise in the
equations, we discuss four sources of intrinsic quantum fluc-
tuations: fluctuations due to cavity damping of the infrared,
fluctuations due to the green light leaving the cavity, fluctua-
tions due to spontaneous emission, and fluctuations inherent
in the conversion process. We also examined the possibility
of fluctuations in the pumping power, and concluded that
these could not cause the noise in the output intensity.

We choose to compute the noise levels in photons/s, so
we abandon our current units and go back to using the ¢
numbers associated wuh the creation and annihilation opera-
tors A and A,. A]A; is simply the number of photons in
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7 7. (a) The average mutual information as a function of time
lag :or the experimental time series shown in Fig. 1(b) (type II
chaos). The time lag is given in units of 8/100 MHz or 800 ns. (b)
The average mutual information as a function of time lag for the
numerically integrated time series shown in Fig. 3(b) (type II
chaos).

mode i and we call this quantity Nz . We repeat the differ-
ential equation governing A; using a generic source of noise
7(t):

dA; -
ar Y A= — Y, . IZ KinlnrA}AlAm+ \/577- (35)
g

where 7(t) satisfies

(n'(t")n(1))=8(r—1") (36)

and D is the noise variance or strength in units of s !
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FIG. 8. (a) The percentage of false nearest neighbors (FNN) vs
the embedding dimension d for the numerically integrated model.
The graphs depict type I with no noise (circles), type II with no
noise (squares), type I with reservoir noise (g*=10"*, diamonds)
and type II with the same reservoir noise (triangle). (b) An enlarge-
ment of (a) showing that the percentage of FNN drops to 0.1% and
stays there as d; increases for both types of dynamics with no noise
added, and type I dynamics with noise. However, the percentage of
type 11 FNN when noise is added is much higher, around 3% .

The noise power in units of photons/s that is added to
each mode tan be computed using the number equation:

dATA; y R
o 2vA[A; 7 “;" KijKimAiAjAIAm

M
—_— 2
+A?¢Dn—y—”§ KA ATA LA
g JJim=

+\Dn'A;. 37

The amount of noise added to the numerical integration in
these units can be determined by converting the noise term in
the above equation to real units E where |E|® is in watts.
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FIG. 9. (a) Local false nearest neighbors for the experimental

* type I time series shown in Fig. 1(a). (b) Local false nearest neizh-

bors for the numerically integrated type [ time series.
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The noise strength in the simulation is 10° W/s. Thus.
D=10* s~!. Using Eq. (37) we find that the noie in
photons/s is

1
Nnum.'z‘lﬁi\/as_—ﬂz{ $29)

where N, is the number of IR photons in mode i. The strange
units in Eq. (39) occur because the units of 7 are the units of
a square root of a & function in time.

From the experiment we find that about 1 mW of infrared
light is output from the laser. Given a transmission loss of
~(0.1%, this means that there is approximately | W of infra-
red power inside the cavity. Since each photon has an energy
of Awy=2x10"" J and the round trip cavity time is
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FIG. 10. (a) Local false nearest neighbors for the experimental
type II time series shown in Fig. 1(b). (b) Local false nearest neigh-
bors for the numerically integrated type II time series shown in Fig.
3(b).

7.=2X107'%s, we find that N;~10°. This puts the numeri-
cal integration noise at 2 10'* photons/s.

Similarly, the output green power of 100 uW with a fully
transmitting cavity implies that the number of green photons
in the cavity N, is about 10°.

A. Damping fluctuations

First we wish to find the noise power due to damping of
infrared light. We compute the noise strength D ;.

(m (D m1"))=D;8(1=1"). (40)

Based on Chap. 19-2 in [15] we find that
IR a
Ni“=ydn(w))= —(n(w))), @41
c
where (n(w,)) is the mean occupation number of bosons and

1
("(w,‘))=—ﬁ—n"—e s e (42)

(a)
~—~ 09 9
d ¢ 0 >
< o7t 07 =
o 08 . 05
x 03} [ ] ° 03
Yot o 3 g i ! ! 111t §
3 01f { 5 S o1 =
S o3} ¢y v vV Y Y Y Y Y 1,535
é‘ 05y Y 05 g
-2
-§ 09} e s s s s 039 :n
gaub . i
o 15F » as 3

>

2 A7 ¢ ]‘-17 E

-1.9 - - 19

12 3 4 5 6 7 8 ,9 10 1
L, Number of steps is 2

(b)
~ 09 ) T <09
i’— 07} ‘o7 2
.- 05% e ‘05 @
g- 0.3‘; . : ° r g
Ww otlf e o i ! ! ! ! 6t &
> .°1A A A g ’ EoR| Q_)
o : « @« < < < « <« < «v z
g 0334 v v v v v v v y ol «
a o5t ¢ VY os &
] [ ia-
S orf 07 g
= 08t 109 9
Qo 11 -1t
§ a3l Lo > > > o s b3 m

15 15 ©
g! w7 ® 7
< ~1,9: <19 o

2.1 21

3 4 5 6 7 849
L; Number of steps is 2

FIG. 11. (a) The average local Lyapunov exponents for the ¢x-
perir=ntal type I time series shown in Fig. 1(a). {b) The average
locz apunov exponents for the numerically integrated type I ime
ser: -own in Fig. 3(a).

Here. k is Boltzmann’s constant and T is the temperature of
the reservoir, which we take to be the cold cavity tempera-
wre of 300 K. The energy of an infrared photon is 1.2 ¢V
while k7T at room temperature is about 0.026 eV. Thus
(n(w)) is 10~%, The noise strength is 10~ 3 s ', The nose
added to each mode due to IR damping is approximate!\

Ngr~2N;VD;;=0.02 photons/s. (43)
Similarly, the green noise strength is
n
(1);(:)17‘(!'))=D,5(I—t')=(—-(i))J(r—t'). (34
8

The noise power in infrared mode i due to green cavity
damping fluctuations from Eq. (A47) is
M M
= tat tat o
N}"“"-zjzl KATAl \[D_gn+2;l xAAIND, 7.
45
which we approximate as

n(2
N‘?"““=4KN,-\/<—L-;-,‘1—)). (46)

3
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FIG. 12. (a) A closeup of Fig. 11(a). (b) A closeup of Fig. 11(b).

Since we know the value of €,

2 01

471k"

€= ~1073wW™, 47

ﬁwd)’g

we find k=500 s ~'. We assume that the decay time of the
green is one cavity round trip time, or 1/7,., which leads to a
noise power of 2 107 !2 photons/s, which is so tiny that it
can be ignored.

B. Spontaneous emission noise

The spontaneous emission power can be determined in a
similar way to the infrared and green contributions shown
above. A simpler method following [16] is used instead.

The Nd:YAG medium has a spontaneous emission spec-
trum with a Lorentzian shape of width y, or 6 cm ™' (180
GHz). Knowing the density of photon modes in a cavity with
volume V.

dN 8mVf?
FTAr (48)

and assuming a cavity volume of 0.25 cm?® we find that the
number of modes in the spontaneous emission width df is
p=3x10".

The total spontaneous emission power in photons/s into a
single mode 1s simply
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FIG. 13. (a) The average local Lyapunov exponents for the ex-
perimental type II time series shown in Fig. 1(b). (b) The average
local Lyapunov exponents for the numerically integrated type II
time series shown in Fig. 3(b).

N,

?pom=__‘ (49)
Py
where N, is the population of the second level. We can de-
termine this population at threshold especially easily for an
Nd:YAG laser because it is a four level laser where
N,>>N,. According to [16], just below threshold,

Py
(Nz‘Nl)mmho1d=T—"’Nz, (50)
4

where 7, is the cavity decay time or, using our constants,
7,= 7./a. What this says is that no net stimulated emission
occurs, and the entire population inversion fluoresces at the
same rate as the resulting photons leak away. In our laser the
population inversion is about 3X 10'5 at threshold.

Substituting the expression for population inversion into
the power equation, we find that at threshold,

a
NiPM=—=5X10" photons/s. (51
<

This is still 7 orders of magnitude lower than the levels we
expect from numerical integration.
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equation much like Eq. (A47). In the process, a new noise
appears, which is related to the diffusion of probability that
occurs with nonlinear terms in the Hamiltonian. Since our
derivation of this noise term follows [17] almost exactly, we
will simply present the results.

Starting with the perturbation related to the KTP conver-
sion process,

M

V=lﬁ2l K,J(a:rajg—gra,a.), (52)
ij=

we find that the terms due to this perturbation in the differ-
ential equations are

3
—2]_21 KU.A;-g

3
_22[ KU.AJQ" — -
J.

P-Al ) : Yl
t t
AL | [
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o] R | |
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3
-22 K3j.Ajg'
j=1 N

FIG. 14. (a) A closeup of Fig. 13(a). (b) A closeup of Fig. 13(b).

C. Conversion noise

Quantum fluctuations also occur in the conversion of in-
frared to green and vice versa. This noise must be deter-
mined with a different method than used in the above deri-
vation [17,18]. In this calculation, a differential equation is
written for the evolution of the density matrix of the system

(master equation), a coherent state basis is used to convert-

the master equation into a Fokker-Planck equation, and fi-
nally, the Fokker-Planck equation is converted to a Langevin

TABLE V. Lyapunov exponents of experimental data and
model. -

Average Lyapunov exponents

L =2048:d; = T;d, = 7

d{g
ai g

1

K..
= ”[

Mx

A4

|

(53)

(54)

Here, A; is a ¢ number similar to (and can be considered to
be equivalent t0) a; used earlier. The noise matrix B is de-

Type 1 chaos Type 2 Chaos
Experiment Model Experiment Model
0.080 0.080 0.244 0.088
0.041 0.038 0.172 0.034
0.008 0.009 0.091 -0.019
-0.033 -0.044 0.007 -0.091
-0.102 -0.152 -0.104 -0.216
-0.278 -0.338 -0.298 -0.518
-1.017 -1.266 -0.788 -1.188

fined by
(kG 0 kG 0 k¢ 0 7
0 xnG 0 «x60 0 6
r kG O xnG 0 kpnG 0
BB'=1 0 kaG' 0 kpl' 0 xuG'
k3G O knG 0 k3¢ O
0 K|3Q" 0 «xnGt O k313G i
(55)

and the 7 terms are zero-mean fluctuation terms satisfying

(nl()n)(t"))=8,8(t-1"). (56)
Other than the noise term, the four wave mixing perturba-
tions are the same as what were derived earlier. The multi-
plicative noise term is much larger than the one derived pre-
viously. A rough estimate of the number of noise photons
added to the IR mode every second is
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TABLE VI. Noise power estimates.
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Name Expression Power Description

Cavity damping

NEE AN / 1 2x107'Ys
SV T/ T SR
K y (e ¥t —1)

8

NE — fa 1 2Xx107%s
2yN; PAPLCTLsY

of green light
Cavity damping

of infrared light

NEm 2yN,«N, 107/s KTP frequency
conversion
NP a 10%/s Spontaneous
T .
emission
NP 2% 10%/s Noise power

from experiment

NE™=2 N, VN, (57)

or 107 photons/s. This answer can be arrived at by other
means. According to Eq. (37) the green production rate is
approximately 4 x2NZ/v,, which is 2X 10'* photons/s. This
is the mean value of a process whose standard deviation we
would expect to be the noise added to the infrared mode.
Since the green mode is a coherent state and therefore has a
Poisson distribution in the number states, we would expect
the standard deviation to be the square root of the mean.
Thus, the noise added to the infrared mode should be around
107 photons/s. Table VI summarizes the power estimates in
photons/s for the noise sources described above.

It appears that there must be another source of noise in
our system that contributes much more than these quantum
mechanical sources. Pumping fluctuations were considered.
To determine if this were the noise source, we substituted

pi=p{l+an(1)] (58)

into Eq. (34) where 7(¢) is a zero mean unit variance ran-

dom number. We found that in order to reproduce the noise
levels of the integrated time series with the experimental
time series using the false nearest neighbors algorithm, we
had to set 0=0.05 or 5% fluctuation in p;. This level is
unrealistically high for pumping fluctuations. In addition, the
fluctuations seen in the experimental data have a character-
istic frequency that is much higher than the relaxation oscil-
lation rate. which is impossible to attain through pumping
fluctuations because of the slow time constant in Eq. (34).

VI. SUMMARY AND CONCLUSIONS

In summary, we have developed a model that captures
key features of the intensity dynamics of the three-mode
Nd:YAG laser with an intracavity KTP crystal. This model
consists of three equations for each infrared mode: two de-
«cribe the complex electric field und one describes the zain.

The inchm\m of both degenerate and nondegenerate f,
wave mixing are features not found in previous modehm‘ :
Fhe laser. Roed gualitative and quantitative behaviors foung
in the eXpenmemral system are captured by this model, which
is espectall sazcessful in its description of the type I case
Tpe distivena berween type I and type II chaos is seen u;
difference w sencture of the four wave mixing tensor, which
also leads x> & difference in the noise susceptibility of the
equationy & =oton.

Type 1 «“Naos occurs when all modes are parallel polarizeq
and is conexisble by the OPF chaos control algorithm. The
model “syres the bursting behavior found in the time
traces. Exttermatly low levels of green light are measured in
type I outpur, which is described by the model as a predom-
nance ot. \i=generate four wave mixing in the laser cavity
Lo»'v nose ‘ewvels are measured in the intensity dynamics.
which agrees with the suppression of noise in the type i
model dy varrsics. The local false nearest neighbors test and
the Lyapusnsy axponents match between model and experi-
ment.

‘ Type 11 shaos occurs when one mode is polarized perpen-
dicular > e sther two and is not controllable by the OPF
scheme. "™ spiking, highly irregular time series behavior is
captured :x 2y model. The large amount of green light pro-
duced By e laser is due to a large amount of degenerate
four Wave muxing in the laser cavity. The high noise levels
found in e rensity dynamics agree with the model’s ten-
dency ' ‘nx suppress reservoir noise but to amplify it in-
stead. Howanvesr, the local false nearest neighbors test and the
Lyapunc  sxonents do not match well between the model
and the e\:~e=ment, leading us to believe that type II chaos is
not fully magsled. We have found that the parameter space
of the el is quite complex, especially when degenerate
foqr waze mrxing is present. It is possible that additional
noise S\ureas remain to be identified and included in the
model.

Nonizxa- sime series analysis has aided this investigation
by revesung the link between the high noise levels in the
data anC e iarge green light output. A more sophisticated
model 2xa: reoroduces type I behavior almost perfectly and
approxt=uees type II behavior is the major resuit of this pa-
per. Ticne <ecjes analysis allows us to make a quantitative
comparsnr of the model with the experiment. This is the
first cass we kmow of where chaotic time series analysis has
significxinen ajded the development of a more complete
physici muge] of the dynamics. This system and model pro-

vide a ™=ns 10 study the influence of noise on chaotic sys-
tems.
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APPENDIX

We reiterate the Hamiltonian
M

M
H=23 hwala+hug g+:ﬁ2 xfalalg=g'a@)+ 3 X (Mublbu+ AT ulbyal ~apl)1+ T (H0ubliby+ T slbys’

Lihw, . )
—gbl)]+ L [733(2)4'1"‘2' [0.~S+(z)a.~sin(K,-z)—a,-*a,fS_(z)sm(K;z)]*'g (AT 4(2)S 4 ()b~ AT 4(2)bLS (2)] 1 dz

+2 mlyblby.
k

Using this Hamiltonian and the standard Heisenberg equa-
tions of motion

-ﬁd. —
1 E_["H]» (AZ)

we arrive at the equations of motion governing the system.

: M
da;
i t
—d'T—-"la)iai"'szl K,'jajg"'; rikbik
L
—f o}S_(z)sin(K;z)dz, (A3)
0
dg il
:17——10) —[‘m2=| K,,,,a,a,,,+§k: ngbgk, (A4)
dby .
T’-—rikai“nikbik' (AS)
db g,

gkg—iﬂgkbgk (A6)

The green reservoir equation (A6) is linear in b,,(1) so we
can integrate it:

. ' . ’
bgk=-b3k(0)e—,n'k’—rgk g(tl)e—tﬂ'k(t"l )dtl.
0

(A7)

Substituting this into (A4) we arrive at
2 iwg- S + 2 Ty =byi(0)e™
i g e, Kimaiant o Lol = gk(0)e s

4 : ’
—Tpe| g(t)ePatt=gy! (A8)
0

The fourth term can be approximated by a damping term
using the Wigner-Weisskopf approximation where the
modes are assumed to form a continuous spectrum and the
interference time of sum on g(t) is assumed to be much
smaller than the characteristic time scale of the equation.
This approximation is discussed in detail in Sec. 19-2 of [15]
and will not be elaborated further here. This leads us to

(A1)
!
M
dg ; * -} 1
E=—(Yg+‘w3)g_ 2 Klmalam—z rgkbgk(O)e e
im=\ k
(A9)

where y, represents the damping rate.

Since this equation is linear in g(#), we can integrate 1t to
find

g=—g(0)e™r*ivy)
M

—j 2 Kim@(1')a,(t' e~ (Tatiegt=t g
0l.m=1

rgkbgt(o)

- ___T___(e(y“*iw‘—l'ngk)l_ 1 )
E Yeti(w,—Qy)

(A10)

In the integral, we replace the rapidly varying infrared op-
era: “3 a;(t) with the more slowly varying interaction repre-
ser. on forms A,(¢t) in the rotating coordinate system
whe -

ai()=e" "4 (1), (A1)
then we perform the integrations by removing the slowly
varying operators from under the integral. This method u»-
sumes that the damping rate y, (~10'" Hz) is much higher
than the characteristic time scale of the evolution of the
slowing varying interaction form of the green operator. We
find through experimental observation that the green inten-
sity varies at the same 100 kHz rate as the infrared operator.
For times large compared to -y‘ we can ignore the decaying
transients. Thus we find

M

g=-2

tm=1 Yy ti(w,

Cubu(©® o,
2‘ 7, ti(w,—Q, )e

KimQQpm

-wl—wm)
(A1)

This expression is further simplfied if we assume that in

order for significant infrared-green conversion to occur.
w,=wtw,.

1 M

§==— 2 Kina@n+7,,
‘y;lm'—

(A13)
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where 7, is a dimensionless fluctuation term

Teib,i(0) - ity

— Al4
k Yg+l(wg-ﬂgk)e ( )

ng=—

The green mode is seen here to be ‘‘slaved’” to the infrared
dynamics; namely, g(¢) is determined solely in terms of the
infrared modes and fluctuations associated with its coupling
to the external world. The use of a single green mode opera-
tor is justified as the green light escapes from the laser cavity
and its dynamics is not observed. In what follows, we shall
see it acts as a damping factor, and the detailed mode struc-
ture is not important.

Performing the same operations on the infrared equations
(without the final integration) we arrive at the equations of
motion for the M infrared modes.

da; ¥
g;""—(%"-lw)a + - E 2Ku 1g

L
- fo oFS_(z)sin(K;z)dz, (A15)
where
yi= 7T ()*D(w;) (A16)
—g Tibi(0)e ™ iet (A17)

M =3 in our problem.
Next we substitute g into this equation, move to a coor-
dinate system rotating with frequency w; by substituting
A;=e'“a;, (A18)

and assume that in order for significant four wave mixing to
occur, w;+ w;=w;twy:

dA,;
dt =—71 i 7“12 KuKlmA} IA
M
+22 A’?] eilwitwi o ”elw,t
- j=1

L
- fo oS _(z)sin(K;z)dz. (A19)

Now we turn to the two level system equations of motion.
Although the Nd:YAG laser is actually a four level system,
this model works well for determining the equations of mo-
tion. It fails when computing the spontaneous emission noise
power, so we compute this power in another way. In the
meanwhile we will ignore all noise contributions from the
two level system.
The pertinent equations of motion are

M

=_;

dSiuz)
di

aS.t2)a,+aS_()]sin(K,z2)
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+2; [T5u(2)S+(2)b

Th(2)blS-(2)]+2A, (A20)
ds_(z)
—— =iw,S.(2)~ 2 T3 (2)b]S3(z)
M
-E a:a!S,(2)sin(K z), (A21)
ds_(z) .
- =—zw,s-<z>—§ T,4(2)S3(2)b,,
M
—.Z'. 0:53(z)a;sin(K;z), (A22)
db,
—dt—k-—"lﬂ,kb,k fr H(2)S_(2)dz. (A3
db:k
o =i, bl — fl“,k(z)s+(z)dz (A23)

Note \a1 we have added a constant 2A to the S equation to
accwowey for the steady-state population inversion due to op-
tical ~cnping. A is a pumping rate density and has units of
1/(leegi X time).

Rxmally integrating the reservoir operators, substituting
therr mio the S.(z) equation of motion, and making the
Langen-g approximation we get

ds.(z) )
77 - (T Hie)S(2)+ 7(2)S5(2)

M
-21 ola}Ss(z)sin(Kz). (A25)

At 2xx oint, we need to note that the Nd:YAG laser 1s a
class 8 laser and its polarization decay rate is much higher
thar ~  because the polarization of the active medium is

A a.ffm:.-,\. by the surrounding crystal lattice. For Nd:YAG.

Y5 ~ approximately 240 us. The actual polarization decay
time ~ ! js on the order of 10~ !! 5. So we substitute the

faster gecay rate ¥, for ¥, and ignore the associated fluctua-
tioes

Noa we transform the S.,.(z) equation to a rotating frame
WIS he driving term frequency w, by substituting

Si(2)=e7'd's (2), (A26)
d$+(z)
—'d—'——[ 7p '(ws wd)]s-l-(z)
M
—Z' oale 'S (2)sin(K,2).  (A2D)

Sirey :he polarization decay rate is so high, the S_(z) equa-
ter ~ <iaved to the population S1(z) and the field a,e'*#. So
We - .onancally eliminate this equation by setting
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ds.
(2) =0

= (A28)

We also assume y,>> w,— wy, which is equivalent to say-
ing that the modes that lase are very near the peak of the
Lorentzian line shape of the transition. The S_(z) equation
is similar.

1 &,
S*(Z)=-‘y_21 oae fodlsin( K;2)S4(2), (A29)
pi=

M

§3(2) :
l 2 o.a;e'“dsin(K;z).
‘)’p i=]

S_(9)=-

(A30)
We now take the S;(z) equation, substitute the reservoir so-
lutions, and perform the Langevin approximations:

dS4(z)
dt

=2A=27,[1+S3(2)]=2[S+(2)m}(2)

M
—m<z>s.(z>]+2§l oi(S+(2a;

+aS_(z)]sin(K;2). (A31)

For simplicity, we ignore the noise contribution term
7,(z). Substituting S.(z)e™*d" for S.(z), assuming S$3:(2)
commutes with a;, and ignoring cross terms we have

455@) aA-29,01+S s
TR vl 1+S5()] ” 3(2)

M
X 2 olala;sin®(K z). (A32)
=

We substitute in A; and multiply the entire equation by ¥,
the total number of atoms.

dNS3(Z) 4
' ANA =2y [NI+NS3(2)]- ;/—NS3(Z)
P
M
x D, o*AlAsin}(Kz). (A33)
i=1

Associating .the operator NS3(z) with the population inver-
sion n(z), we find that NI must be the density of two level
systems in the medium N/L. We also define

T=(27)"" (A34)
__{NA N (A35)
RE2N
to get
. M 2
dn(z)_-l_ N ﬁt 2
o 'r,(n(‘) n) n(z)z,l 47PA,-A,»sm (K,2),
(A36)

where 7, is the fluorescence decay time of the Nd:YAG me-
dium 1240 us) and A is the mean population inversion.
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Now we return to the field equation and substitute
S_(z)e~*d" for S_(z) and take advantage of the orthogo-
nality condition of the normal modes

L
Io Sin(K,'Z)Sin(KjZ)dZ'—- 5,1 (A37)

to get

M
dA; 2
— -A,'“_ KiiK TAA,.,,
dt Yi Y j.l.§=l j ImA] I
M

+22 AI 17‘8i(w,~+wj)r+ ﬂiei”i'
j=1

A
+ F/Ty-;J'o sin(K;z)n(z)dzA;. (A38)

We have identified n(z) here. At this point we recall that the
number of photons in the cavity is large (10°) and treat the
quantum mechanical operators A; and A] as if they are ¢
numbers.

We break the population equation into the component
normal modes as described in detail in [3]. To do this. we
define a mode gain G; as

___2|Ui|27c
i N'Yp

L
J-o n(z)sin*(K;z)dz, (A39)

where 7, is the round trip cavity time of the laser (0.2 ns).
Then

y
ot 209 T,

L1
- s

il 4|Uj|2 2.:.2
—n(z)El —y-—{Ajl sin®(K;z)
=t Y

sin?(K,z) dz.

(A40)

We integrate the first two terms on the right hand side and
substitute the pumping power

.=a‘?nr‘ (A4
pl N‘yp "’
dG, 1 20l o),
= 7P O Ry T A
L 20'21; M o2
x | n(z)sin®(K.2)dz+ ———2, 2—1A |2
[ mosm e S, 274
L 1—cos(2K;z)
XL n(z)cos(2K;z) — dz. (A42)

We define the mode coupling constant §;;:

_ Jgn(z)cos(2K2)[1 —cos(2Kz) 1dz
BT fEa(2)[1 —cos(2K 2))dz
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_ J§n(2)cos(2K,2)[ 1 - cos(2K z)]dz
B 2G(Nv,20;7,)

(A43)

This coefficient is truly a constant if n(z,r) factors into sepa-
rate time and space dependent components; this is probably a
good assumption for a standing wave cavity. Thus

M
dG; 1 2|o]?
—=—(pi=G)) =G, ’
dt T!(p ) 121 ‘)'p

14,12

M
2ol
+Gi2 __71 IAj|2§ij
p

(Ad4)
=
1 M
= - 11412
ool o3 e
. (A45)
where
, 20!
Bij’_'—fj(l = &) (A46)
Yp
The field equation is simplified.
, M
dA; | G; 2
—_—t e =L ey |A - — . t
dt .2Tc 71)‘41 Y j./.§=l KuKlmAjAlAm
) M
+22, KA nge T et (A4T)

j=1

We rescale the field equation so that it has measuratle units.
We define the electric field £ so that /=|E|? has units of
watts. That is.

LIU, ROY. ABARBANEL, GILLS. AND NUNES S5

f
|E2=la 2 (A48)
(4

since |A;|? is simply the number of photons in mode i. We
also substitute ;=2 v;7. and assume the «;; are real:

47 ¥

4

L G-a)E D E*E,E
dt —2TC( i ai) i ﬁdeg = KijKimLj L1Em

M
. hwy .
+22, Kk EFmaeieit i+ \/—T pieiit. (A49)
J=1 c

Now we define x and {;; so that x{;;=«;; and {;; is
unitless and of order unity and define

41%'(2 (AS0)
€= ,
fhwgy,
which has units of inverse watts. We also define
ﬁwd 2|cr,-|2ﬁwd7'f
= ! = -_—5 .
Bij=Bi; . "y (1-¢&;) (AS1)

which has units of inverse watts. The resulting equations are

E_1Lie E f E*EE
ar -276( i—a)E; Ej‘k'l=l{ij£lm jEtEm

M
. ﬁwd .
+2K2| LiEF nget e+ \/——T e’
J= c

(A52)

dG; 1‘ i
—_— —G. E |2
o 7l Pi G,(H—le BilE,| )] (A53)
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We investigate the structure of the strange attractor of a chaotic loss-modulated solid-state laser utilizing
return maps based on a combination of intensity maxima and interspike intervals, as opposed to those utilizing
Poincaré sections defined by the intensity maxima of the laser (/=0,/<0) alone. We find both experimentally
and numerically that a simple, intrinsic relationship exists between an intensity maximum and the pair of
preceding and succeeding interspike ‘ntervals. In addition, we numerically investigate encoding messages on
the output of a chaotic transimitter !aser and its subsequent decoding by a similar receiver laser. By exploiting
the relationship between the intensity maxima and the interspike intervals, we demonstrate that the method
utilized to encode the message is vital to the system’s ability to hide the signal from unwanted deciphering. In
this work altemative mecthods arc studicd in order to encode messages by modulating the magnitude of
pumping of the transmitter laser and also Ly driving its loss modulation with more than one frequency.

[51063-651X(97)01808-4)
PACS number(s): 95.40+j. 42.50.Lc

- L INTRODUCTION

There has been great interest in the use cf chaotic signals
as the carricrs of analog and digital information over the last
few years, initiated by the work of Pecora and Carroll (1],
who suggested that synchronized chaotic systems conld be
employed to encode and decode messages in real time. Re-
cent experiments have demonstratcd that using chuos 10
communicate is practically feasible with clectronic circuits
(2.3). The typical frequencies of the chaotic carricr wvave
forms in these circuits is of the order of 10 kHz, and cven
with the prospects of speeding up these circuits by several
onders of magnitude, it is still of intcrest to consider commu-
nication with chaotic optical signals which have the potential
for even higher information transmission and reception rates.

Two groups have experimentally demonstrated that cha-
otic lasers can be synchronized. Roy and Thornburg (4]
showed that synchronization could be achieved in a pair of
pump-modulated Nd:YAG (yttrium gallium garnct) lasers by
altering the mutual cvanescent ccupling between the lasers.
Sugawara et al. 5] demonstrated synchronization of two
CO, lasers by injecting the output of a master laser into a
receiver laser with a saturable absorber. Colet and Roy (6]
have suggested a scheme involving the synchronization of a
chaotic Nd:YAG carrier laser to a receiving laser, and the
subscquent decoding of the hidden message in real time by
subtraction of the receiver input from its output. The sharp
pulses generated by loss modulation of the laser serve as a

*Electronic address: alsing@arc.unm.cdu
Electronic address: tom@photon.plk.af.mil
$Electronic address: kovanis@xaos.pik.af.mil

1063-651X/97/56(2)/1(9)/$10.00 $6

natural background for encoding and camouflaging digital
information. The authors demonstrated the validity of their
proposed scheme in numerical simulations. This idea has
been cxtended to a model of synchronized chaotic semticon-
ductor lasers by Mirasso et al., who have included the cffects
of x tiber optic channel on the information processing (7].
In: this paper we explore issues related to the communica-
tion scheme as proposed in [6]. In Sec. II the loss-modulated
Nd:YAG laser model is introduced along with techniques for
cncoding and decoding of messages. Next, in Scc. I we
present an analysis of numerical and experimental time series
via return maps based upon interspike intervals. We find that
a simple relationship exists between an intensity peak and
interspike intervals that precede and follow the peak. The
conscquences of this relationship on the issue of deciphering
the message encrypted in the chaotic carrier is explored in
Sec. IV. Two schemes for encoding information are then

introduced that make it more difficult to decipher the mes-

sage. These consist of laser parameter modulation of the
transmitter to encode the message and the use of quasiperi-
ociic parameter modulation in both transmitter and receiver,
so that the interspike interval return maps become ineffectual
as deciphering tools, while the receiver’s ability to decode
the message is retained. The main results of the paper arc
summarized in Sec. V, and conclusions arc drawn.

I1. SCHEME FOR COMMUNICATING
WITH SYNCHRONIZED CHAOTIC LASERS

‘The scheme proposed by Colet and Roy [6] for comnu-
nicating signals via chaotic synchronized lasers is composed
of a pair of loss-modulated Nd:YAG lasers operated in the
chaotic regime. The hidden signal is decoded by subtraction

! © 1997 The American Physical Society
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FIG. 1. (a) Numerical simulation of the loss-modulated
Nd:YAG chaotic laser. Egs. (2.1). @or=agz=001. a,=2.0
X10™%, Q=541.6 ms™', Pr=P;=003. €r=e,=833%107"

s™'. we—wp=50000 rad/s and «=10"" (b) Experimental data
from a loss-modulated Nd:YAG chaotic laser operated one-third
above threshold with paramcters  as in () except for
7.= /y.=0.45 ns.

of the receiver and transmitter intensities.
The model for the transmitting laser is described by {6,9]

dE
77-: = 7;'(07'— agr™— O’XCOSQY)ET"T'I.MTET+ ‘jE_T”Tn
(2.12)
dG
—= =y (Pr=Gr1 +IE)], (2.1b)

where Ey is the complex, slowly varying amplitude of the
clectric ficld, Gy is the gain of the active medium, 7,
=1/y,= 450 ps is the cavily round-trip time, 7,=1/y,
=240 ps is the decay time of the upper lasing level, wr is
the detuning of the laser frequency from the nearest empty
cavity mode, Py is the pump parameter, €r is the spontane-
ous emission noise strength, ard 77 is a complex Gaussian
white noisc term of zcro mean and  correlation
() n2(1"))=25(r—1"). The loss modulation is given by
ar(1) = agr+ a,cos(Qr) where @, /agr<!1. The modulation
frequency €1 is chosen to be close o a submultiple of the
relaxation frequency w,= 2y . Y{(Pr—ao1).

The output intensity of the chaotic laser is a scrics of
irregularly spaced pulses having a spiky appearance. 2s cvi-
denced in the numerical simulation of a loss-modulated
solid-state laser in Fig. [(a) and in similar experimental data

such as Fig. 1(b), which are recorded at slightly different
parameter values. Although the numerical simulation and the
experimental data appear similar with respect to the irregu-
larity of the intensity maxima, the temporal sequence of in-
tensity maxima appears more regularly spaced in the experi-
mental data than in the numerical simulation. We will retum
to this point, and to a more detailed description of the output
intensity, in Sec. IIL

The equations describing the receiving laser in which the
ercoded signal from the transmitter laser has been injected
are given by

dEg .
T:yc(GR- GOT-O’|COSQf)ER+inER

A
+\[¢-;7IR"KAb‘Yc(ER"—SEr). (2.22)

Ay

dGp

w7l ¥,(Pr=Ggr(l-+ [ERl®)].

{(2.21)
In the above equations all variables have the same mcuning
as for the transmitter. In addition, the modulated loss cocf':-
cient of the receiver, ag(r)m agp+ a,cos({l) is operatcd ot
the condition for synchronization (i.e., Ex=F£)).
egr= agr+ x. The quantity x<€aqr is the coupling cociti-
cient between the transmitting and receiving laser which i
accounts for any losses in the transmission process [9].

The transmission coefficients A in Eqgs. (2.2) describe the
encoding of the signal on the external output of the transmit-
ting laser. The output intensity of the transmitting laser is
slishtly attenuated by an external filter by a fixed bias factor
A,. so that the intensity at the receiver is given by
E}=xA,Er. This implies that synchronization is achieved
when no signal is encoded at a setting of agg=agr+ xA,.
To encode a **1"* bit, the transmission is increased a few
percent to Ag>A,, while to send a **=1"" bit the transmis-
sion is decreased a few percent to Ag<A,. Thus thc mes-
sage is encoded as small amplitude modulations of the spiky,
high intensity output of the transmitting laser. To avoid en-
coding signais on the low intensity pulses, the pulses are
monitored before attenuation and only those pulses whosce

. intensity exceeds some predetermined, fixed threshold inten-

sity are used for encoding.
In Eq. (2.2a) the signal difference term can be written a5

As
- ""‘b?‘c(ER- Z:Er) == xAYEx—E7)

+K‘f‘.(A3‘Ab)Er. (2.3
The first term — xA, ¥ (Eg—E7) is responsible for the syn-
chronization of the transmitter laser to the receiver laser. [Far
values of x above some threshold, the damping is sufficicnt
to drive the signal difference to zero, thercby synchronizing
the receiver to the chaotic transmitter carrier wave. If
kY (As—=A,)Er is small, the transmitter carrier wave plus
signal is then entrained by the receiver laser. The signal can
be deciphered precisely because it is a small perturbation of
the carrier signal. As long as the x is above some threshold
value (which usually needs to be found empirically. sce Fie.
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FIG. 2. (a) Plot of intensity maxima rctuit map 74{n=1) vs
I4{(n) with data from Fig. 1(a); (b) samc data plotted as intensity
maxima /¢{n) vs the interspike intcrvals drp(n+1)=r{n+1)

=t1{n) and Ar(nm)=1p(n)=17{n=1).

2 in [6]) and the signal amplitude is small relative to the
carrier wave, the carrier wave plus the encoded signal re-
mains entrained by the output of the receiving laser.

The encoded signal can then be extracted as the integrated
intensity difference M (6],

M= (|AsEr|=1A,Eq])d1.

(2.4)
puise

The quantity M will cqual zero when no signal is sent,
As=A,, and will have a strong positive (negative) value
when 2 ““1"* (**=1"") bit, As>A, (As<A,), is being scnt.
Figure 2(a) shows a first return map of the numerically gen-
crated receiver intensity [g(n+ 1) vs /g(n), evaluated at the
intensity maxima, when a signal has been cncoded on the
transmitter. The carrier wave maxima, and the **1"" and
“— 1" bit are depicted by the diamonds, pluscs, and squarcs,
respectively. Onc sees that the encoded signal is sccmingly
inextricably mixed with the carmricr wave. Higher dimen-
sional intensity peak return maps, /(n-+1) versus
{1(n),J(n=1),1(n=2), ...}, offer no additional help to-
wards unraveling the signal from the carrier [8].

I ANALYSIS VIA INTERSPIKE INTERVALS

A uscful representation of the data occurs when one con-
siders return maps kased not selely on intensity maximardut

rather on a combination of the intensity maxima with the
time intervals between intensity maxima, which we call the
interspike intervals (ISI). In a recent paper, Saucr {10] pro-
posed the use of interspike intervals as a means for attractor
reconstruction from time series, in analogy with Takens’
theorem {11]. In this work we use the interspike intervals to
find a useful relationship between the ISI and the intensity
maxima of a chaotic loss-modulated solid-state laser.

Figure 2(b) is a plot of numerically gencrated transmitter
laser intensity maxima Ir{(n) of Fig. 1(a) occuring at time
t(n) versus the pair of interspike intervals A¢7{n+1) and
Atp(n), where At{n+1)mt{n+1)=t4{(n). Here
Atp(n+1) is the time between the nth intensity maxima
I4(n) at time r7{(n) and the occurrence of the next intensity
maxima at time tp{n+1). Similarly, At{(n) is the time be-
tween the nth intensity maxima //{n) at time t4{n) and the
previous intensity maxima at time f7{(n—1). A reconstruc-
tion of the attractor solely using interspike intervals, i.c..
Atp{n+1) versus Ar(n) and Aty(n=1) reveals no added
information over a reconstruction solely using intensity
maxima, /(n+1) versus I(n) and /(n—1). It is the combi-
nation of intensity maxima and interspike intervals as shown
in Fig. 2(b) which uncovers structure, and a relationship Le-
tween physical quantities.

Figure 2(b) shows results of the numerical simulation
with noise (**+'*) and without the inclusion of noise (dia-
monds). The level of noise was chosen to be typical of that
cxperienced in laboratory experiments (see Fig. 1 in (6).
Both the noise-free and noisy maxima fall on a ncarly two-
dimensional surface that is essentially planar. Figurc 3(a)
shows the intensity maxima of the noise-free simulation,
while Fig. 3(b) shows the same Llot from an edge-on vicw,
that is [-(n) versus

cos( 0> {n+1)+sin(8)Arr{n)

2[Ard{n+1)+Ar{n) V2
=[t{n+1)=t{n=1)} 2.

where the angle 0=m/4 gave the optimal view. Herc wc
clearly see an almost one dimensional structure of the return
man. Figure 3(c) shows the noisy simulation with the similar.
nearly one-dimensional structure in the return map, viewed
cdge on in Fig. 3(d). Note that the intensity maxima of the
noisy simulation Fig. 3(c), fall on thc same nearly two-
dimensional surface of Fig. 3(a), but in that portion of the
surface corresponding to lower intensity maxima. We return
to this point shortly.

Figure 3(e) is an edge-on plot of the experimental data
(diamonds) of Fig. 1(b). Because the experimental data was
taken at parameter values slightly different from that of the
numerical simulation, the temporal variation of the interspike
intervals in Fig. 1(b) is on a finer scale. In fact, the data in
Fig. 3(e) corresponds to the upper right-hand, high intensity
maxima comner of the data of the numerical simulation, Fig.
3(c). However, even for this more uniform variation of the
interspike intervals, a plot of the intensity maxima-ISI return
map reveals structure and a relationship between physical
variables. The experimental data is again cssentially planar
as evidenced by a global least squares fit of the experimental
intensity maxima to the experimentally derived interspike
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edge-on view of part (c); (¢) edge-on view of experimental data (diamonds), Fig. 1(b), with global least square fit (** +**) of intensity maxima
I11(n) 10 At{n+1) and Ary(n). Note that this data corresponds to the upper right-hand comer (15-20 us) of (c).

intervals Ar(n+1) and Ary(n). The plane of this lcast
square fit of intensity maxima to ISI is shown in an edge-on
view as the overlaid heavy straight line (**+'") in the center
of Fig. 3(¢). One should note that it is not important in plot-
ting these return maps to utilize the precise maxima of the
intensity, which may be hard to resolve in an actyal experi-
ment. Any convenicnt threshold value on the intensity spike

could be used to replace /H{(n), and Arr(n) would then be

measured as the time between successive crossings of this
threshold.

If one were to plot a three-dimensional return map of the
interspike intervals alone, i.c.. Arp(n+1) vs Arg(n) and
AtH{n=1), the result would be an unfolding of the attractor,

topologically equivalent to an unfolding utilizing only the
intensity maxima, /(n+1) vs /(n) and I(n— 1). The signifi-
cance of the nearly planar (linear) structure of the intensity-
ISI return maps in Fig. 3(a) [Figs. 3(b) and 3(e)] is that it
implies that there exists a nearly linear relationship between
the intensity maxima I{(n) and the interspike intervals
Aty{n+1) and Arg(n).

Schwartz and Emeux [12] explored this loss-modulated
laser system and found explicit representations for the Poin-
caré mapping between the (dimensionless) gain and the IS
applicable to the period ! and 2 orbits. Though it is not the
goal of this paper, Figs. 3 suggest that such a map might be
found also in the chaotic regime. They analyzed the periodi-
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noise, (b) with noise. [/ is the steady-state intensity of the conser-
vative system, which to lowest order approximates the system of
equations in Eq. (2.1)). The large intensity maxima occur when the
previous intcnsity minima reach very low values.

cally driven laser system as a conservative system (to lowest
order of approximation) plus small nonlincar terms. When
dissipation is neglected, periodic orbits in the plane of the
(dimensionless) gain x and intensity relative to the steady-
state value of the conservative systcm y=(I-=1)/1, arc
rounded triangular closed orbits with a flat base parallcl to
the x axis at a value of y~—1 corresponding to zcro inten-
sity (see Fig. 4 and Fig. 5 in (12]). High intensity maxima
correspond to the previous intensity minima reachinz very
low values, Fig. 4(a) where we plot the dimensionless inten-
sity and gain /() vs G1) from Eq. (2.1) as y(f) vs
x(1). In the chaotic regime, the lowest order approximation
of the laser system is still a conscrvative system, and this
relationship between the height of the intensity maxima and
period (and therefore 1S1) is retaincd. With the inclusion of
noise, Fig. 4(b), a minimum base line intensity is maintaincd,
which correspondingly limits the maximum height of the in-
tensity peaks. We see this in Fig. 3(a) where the noisy inten-
sity maxima are restricted to the portion of the two-
dimensional surface corresponding to smaller intensity peak
heights and therefore, small values of the ISL
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1V. CONSEQUENCES FOR CHAOTIC COMMUNICATION

The regular structure of the intensity versus ISI return
maps has important implications for communicating signals
via a chaotic transmitter laser. As proposed by Colet and Roy
[6], the transmitter laser encodes the signal by an amplitude
modulation external to the laser. Since the transmitter is not
intrinsically perturbed, Figs. 3 suggests that the intensity
maxima-ISI return maps applied to the transmitter signal
alone could be used to decode the signal. Figure 5(a) is a plet
of the simulated transmitter intensity output maxima /r{(r)
vs the ISI combination [re{n+1)=fr{n= 1)/ 2, when the
lascr has been modulated with Ag=10£0.154, wuh
A»=0.85, without the inclusion of noise. Signals were ¢n-
coded only on intensity maxima with values approximately
greater than 10. The middie branch is the no-signal maxima
As=A,, while the upper branch corresponds to a ‘1" bt
Ag=1.15A,, and the lower branch corresponds to a **—1"
bit As=0.85A4, . Figure 5(b) is the corresponding simulation
when noise has been included using a valuc of
er=€x=8.33%107° s~!, typical of actual experiments
(6.9). Even though the noise smears the branches out some-
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F1G. 6. The retum map of the transmitter lascr, [Hn) vs
{t{n+ l)—lf(n—l)]lﬁ. when the transmitter laser pump has
been modulated with Ps= 1.0+0.50P 7. (no aoise). Compared with
Fig. S(a), the signal branches corresponding to the encoded bits
{1.= 1} have been merged with the no-signal branch.

what, they are still clearly distinguishable. Plots at S% en-
coding modulation for Ay=0.9 show similar behavior of
clearly distinguishable signal branches.

The signals embedded in the chaotic output of the trans-
mitting laser were decipherable because of the inherent rela-
tionship betwecn intensity maxima and interspike intervals
exhibited in the intensity-1ST return maps. This encoding
scheme, in which the transmitter laser intensity was modu-
lated outside of the laser cavity, did not dynamically alter the
relationship between intensity maxima and intcrspike inter-
vals. Thercfore, t0 encode and hide signals on the chaotic
transmitler carrier we suggest that it would be more advan-
tageous to have the encoding method fundamentally perturd
the 1SI. This can be achicved by modulating the transmitter
pump across an intensity peak. The actual beginning and
ending of the modulation could occur’ in the intensity
troughs, as long as the pump change persists over the inten-
sity peak. In Figure 6 we have simulated the intensity output
of the transmitting laser when its pump has been modulated
with Ps= 1.0+0.50P (1) and without the inclusion of noise.
The resulting edge-on view of intensity-ISI return map for
the transmitter shows that the attractor surfaces have been

essentially merged together onto the no-signal surface. Even

if we were to look at the logarithmic signal differences, our
success rate of distinguishing a "' = 1** bit from no-signal via
the transmitter rcturn maps is greatly diminished due to the
severe overlapping of the surfaces. For smaller modulations
or with the inclusion of noise, things only become more dif-
ficult. However, the signal can be decoded when the trans-
mitting laser outpul is synchronizcd to the receiver and the
integrated signal difference of Eq. (2.4) is utilized.

We point out an intercsting fcature of this encoding
scheme that differs from the original encoding scheme in
which the laser intensity is externally modulated. Figure 7(a)
shows the decoded message bits (solid line) when the exter-
nal intensity is uscd 10 encode the signal. The dashed line in
this figure is the value of the discrete bits <+ 1 ' cncoded on
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FIG. 7. The inegrated signal difference M (n=E7?
—|A,E? vs time for the receiver laser: () external modulation of
peak intensity, (b) pump modulation by 50%. The broken line is the
discrete bit values encoded on the transmitter laser. For the pump
modulation scheme (b), the signal is encoded in the difference be-
tween the positive and negative maxima of the integrated signal
difference across the intensity maxima. (c) magnification of the
region 525<1< 535 of part (b) showing the deoding of 2 **—1"" bit
(lft) and **1** bit (right).

the transmitter laser. Although it is drawn as a continuous
line, the value of the encoded bit only has meaning
across the intensity peak. In these figures we plot
M=|ER=1A LExl? vs 1, where |E4|? is the intensity of
the modulated transmitter laser at the receiver laser. Positive
values of M(¢) can be associated with 2 transmitted **1°" bit
and negative values of M(t) can be associated with 2 **— 1
bit. Figure 7(b) shows a decoded message bit when the pump
is modulated by =50% to encode the signal. The signal s
again decoded by the integrated signal difference M (1) and
the dashed line in this figure is the value of the discrete bits
«+1" encoded on the transmitter laser. The first two
“plips' (+<490) in Fig. 7(b) represent no signal encoded.
The encoding of signals consisting of random values of
v+ 1" beginning at 1> 490, Note that M(1) in Fig. 7(b) is
neither all positive nor all negative as is essentially the case
when the signal is encoded Dy modulating |E{® outside the
laser, such as in Fig. 7(a). Figure 7(c) shows 2 magnificd
view of the region 525<L<53S of Fig. 7(b) wherc a R
(left pulse) and w1 bit were decoded from the signal. For
the **1** bit the positive ared is slightly larger than the nega-
live area leading to an overall positive integrated area. while
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FIG. 6. The return map of the transmitter laser, /r(n) vs
(rn+ V) =1{n= D)) J2. when the transmitter laser pump hus
been modulated with Pg=1.0£0.50Pr, (no noisc). Compared with
Fig. 5(a), the signal branches corresponding to the encoded bits
{t.— 1} have been merged with the no-signal branch.

what, they are still clearly distinguishable. Plots at 5% cn-
coding modulation for A,=0.9 show similar behavior of
clearly distinguishable signal branches.

The signals embedded in the chaotic output of the trans-
mitting laser were decipherable because of the inherent rela-
tionship between intensity maxima and interspike intervals
exhibited in the intensity-ISI return maps. This encoding
scheme, in which the transmitter lascr intensity was modu-
lated outsidc of the laser cavity, did not dynamically alter the
relationship between intensity maxima and interspike inter-
vals. Therefore, to encode and hide signals on the chaotic
(ransmitter carrier we suggest that it would be more advan-
tageous to have the encoding method fundamentally perturb
the ISL. This can be achicved by modulating the transmitter
pump across an intensity peak. The actual beginning and
ending of the modulation could occur in the intensity
troughs, as long as the pump change persists over the inten-
sity peak. In Figure 6 we have simulated the intensity output
of the transmitting laser when its pump has been modulated
with Pg=1.0£0.50P 1(r) and without the inclusion of noise.
The resulting edge-on view of intensity-ISI return map for
the transmitter shows that the attractor surfaces have been
essentially merged together onto the no signal surface. Even
if we were to look at the logarithmic signal differences, our
success rate of distinguishing a ‘= 1'* bit from no-signal via
the transmitter return maps is greatly diminished due to the
severe overlapping of the surfaces. For smaller modulations
or with the inclusion of noise, things only become more dif-
ficult. However, the signal can be decoded when the trans-
mitting laser output is synchronized to the recciver and the
integrated signal difference of Eq. (2.4) is utilized.

We point out an interesting feature of this encoding
scheme that differs from the original encoding scheme in
which the laser intensity is externally modulated. Figure (a)
shows the decoded message bits (solid line) when the exter-
nal intensity is used to encode the signal. The dashed line in
this figure is the value of the discrete bits ***=1,** encoded on
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FIG. 7. The integrated signal difference M(N=|C7’
—]A,Ex|? vs time for the receiver laser: (a) extemal modulation of
peak intensity, (b) pump modulation by 50%. The broken line is the
discrete bit values encoded on the transmitter laser. For the pump
modulation scheme (b), the signal is encoded in the difference be-
tween the positive and negative maxima of the integrated signal
difference across the intensity maxima. (¢) magnification of the
region $25<1<535 of part (b) showing the decoding of a**= 1"’ bit
(tleft) ar *1°* bit (right).

the transmitter laser. Although it is drawn as a continuous
line, the value of the encoded bit only has meaning
across the intensity peak. In these figures we plot

M{(1)ym|EH2=|A,ERl|? vs ¢, where |Ex]? is the intensity of

the modulated transmitter laser at the receiver laser. Positive
values of M(1) can be associated with a transmitted **1°° bit
and negative values of M(¢) can be associated witha *‘—1"
bit. Figure 7(b) shows a decoded message bit when the pump
is modulated by =50% to encode the signal. The signal is
again decoded by the integrated signal difference M(r) and
the dashed line in this figure is the value of the discrete bits
“+1" encoded on the transmitter laser. The first two
“blips’* (1<490) in Fig. 7(b) represent no signal encoded.
The encoding of signals consisting of random values of
s+ 1" beginning at £>490. Note that M(/) in Fig. 7(b) s
neither all positive nor all negative as is essentially the case
when the signal is encoded by modulating |Ef? outside the
laser, such as in Fig. 7(a). Figure 7(c) shows a magnificd
view of the region 525<1<535 of Fig. 7(b) where a " —1""
(left pulse) and **1'* bit were decoded from the signal. For
the **1'* bit the positive area is slightly larger than the nega-
tive arca leading to an overall positive integrated area, while
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the reverse is true for the ** =1"" bit. Again, positive values
of M(t) can be associated with a **1"" bit encoded on the
transmitter laser and negative values of M(t) can be associ-

ated with a **=1"" bit. Net magnitudes of M(r) clustered

around zero can be interpreted as no signal sent. For the case
of encoding the signal by pump modulation, the receiver is
synchronized to the modulated transmitter laser in ail regions
outside of the area of the recciver intensity peak. Under the
peak the transmitter and receiver intensitics arc slightly out
of synchronization, yet still mutually entraincd. with the re-
ceiver lagging the transmitter, leading to the double humped
decoded signals in Figs. 7(b) and 2c).

We note that when this pump modulation scheme is used
to encode the signal onto the transmitting lascr, an intensity
return map Iy {n+1) vs [{n). is again uscless in decipher-
ing the hidden signal, having an appearance similar to that of
Fig. 2(a). In addition, we also explored signal encoding with
pump modulations of 10% and 90%. For both these modu-
lation values, the intensity vs ISI return maps are similar in
structure to Fig. 6, i.c., the cncoded bit surflaces nearly coin-
cide with the no-signal surface and they are all intertwined.
The signals again could be decoded by an integrated signal
difference at the recciver. However, for weak modulations
values (e.g., 10%) decoded bit values could occasionally be
misinterpreted because the difference between the positive
and negative areas in Fig. 7(b) was small enough that a sig-
nal could be interpreted as a nonsignal.

On the other hand, for stronger modulation values (c.g.,
90% ) the decoding would occasionally fail. and decoded bits
would be interpreted incorrectly. These mstapees would oc-
cur when perturbations to the transmitter carricr were enough
to make it sufficicntly dissimilar to the recciver that entrain-
ment was momentarily lost for that signal pulsc. As dicussed
in Scc. 11, the first term of Eq. (2.3) —xA,y(Eg—Ey) is
responsible for the synchronization of the transmitter lascr to
the receiver laser. If the sccond term k¥ (As—Au)Er is
small with respect to the first term, the transmitter carrier
wave plus signal can still be entrained by the receiver laser.
However, for large pulse modulations this sccond tenm may,
on occasion, not be small, and across this spiky peak entrain-
ment is lost. In general, it appeared that intermediate values
of the modulation (around 50%) produced the best results
for reliably decoding the message at the receiver.

In a final numerical experiment, we explored the conse-
quences of quasiperiodically modulating the loss coefficient
of both the transmitter and receiver laser. The form of the
modulation was modified to

a(t)m ag+ a,[cos(2) +aacos(f2) +aycos(f,Q00)],
(4.

where the amplitudes {a;,a3} and frequencies multipliers
{f2./3} are fixed, but arbitrarily choscn constants. Again the
receiver was operated at conditions for optimal synchroniza-
tion @oe= @gr+ KA, and noise (typical for thesc lascrs)
was included in the calculations.

When a single additional frcquency was used, (az
#£0,a,=0 and f,#0,f3=0), the branches of the two-
dimensional intensity-ISI return maps (as in Fig. 5(b)] thick-
ened and merged as the amplitude a, approached unity. This
thickening and merging cffect was pronounced when two
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¥1G. 8. Quasiperiodic driving of the loss coefficient of both the
transmitter and receiver lasers: (a) intensity maxima vs ISI of the
transmitter laser, (b) M(r)=|EH2—|A,Er|? vs time for the receiver
laser. The broken line is the discrete value of the decoded bit. By
adding more driving frequencies (a), the signal branches of Tig.
5(b) are thickened and intermixed. However, the integrated signal
difference at the receiver laser Fig. 8(b) can still decipher the hid-
den message.

additional frequencies were utilized. Figure 8(a) shows the

intensity vs ISI return map for the transmitter laser for the

case a;=ay=1, with a choice of incommensurate relative
frequencies fo=y2 and fy=(y5 = 1)/2. Quasiperiodic driv-
ing led to an increase in the dimensionality of the attractor,
exhibited by the thickening and merging of the intensity vs
ISI map in Fig. 8(a). This renders the intensity vs 1SI map
ineffectual for deciphering the hidden message from the
transmitter laser alone. The effect was qualitatively the same
when additional commensurate frequencies were added to
the driving. However, when utilizing commensurate frequen-
cies, the remnants of the separate attractor surfaces for the
cncoded bits [as in Fig. 5(b)] could be inferred, if barely.
However, the surfaces were thickened and merged enough,
as in Fig. 8(a), to render the intensity vs ISI map ineffectual
as a deciphering tool.

With no signal encoded, the transmitter synchronized ef-
fortlessly to the receiver laser. When the signal was encoded
by amplitude modulation external to the transmitter laser (as
in (6], the signal could be decoded at the receiver laser by
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means of an integrated signal differcnce, as evidenced in Fig.
8(b). Occasionally there were misinterpretations of the de-
coded bits for reasons similar t0 those discussed above for
the case of encoding with pump modulations. We purposcly
increased the dimension of the attractor by adding more driv-
ing frequencies of arbitrary amplitude. Thercfore, when a
signal is impressed upon the transmitter carricr wave, it is
occasionally different enough from the receiver signal so that
the second term on the right-hand side of Eq. (4.1) perturbs
the system enough so that entrainment is lost for this signal
peak. The details of the modification of the local Lyzpunov
spectrum in the presence of multiple driving frequencies was
not investigated, but would make for an intcresting topic of
exploration.

V. SUMMARY AND CONCLUSIONS

We have investigated the chaotic  loss-modulated
Nd:YAG laser and have found, both numerically and experi-
mentally, that a return map utilizing intensity maxima and
interspike intervals (1SI) reveals a regular, almost planar
structure. This obscrvation indicates that a simple rclation-
ship exists between the intensity maxima and the interspike
intervals  centered  about  that maxima, e,
l,(n)=F[Ar,—(n+l).AtT(n)]. In fact, by plotting the nth
intensity maxima / (n) versus the difference between the suc-
cecding and  preceding interspike  intervals. i,
[AIT(n-i-!)-ArT(n)]/ﬁ =[r(n+1)=t(n=1)Y J2, we
observe a ncarly one-dimensional, onc (0 onc relationship
between these variables, even in the presence of noise. This
relationship was obscrved in numerical simulations as well
as in experimental data taken at slightly differcnt parameter
values. leading to a variation of the interspike intervals on a
much finer scale. However, cven in this latter case, a plot of
the intensity maxima-IS] rcturn map reveals an almost planar
structure and therefore a relationship between physical vari-
ables. Such a result would be useful, for example, in time
series prediction of the future intensity maxima. In construct-
ing the intensity-ISI rcturn map it was not cssentiai that the
peak of the intensity be utilized. The 1S1 could have been
defined relative to some arbitrary threshold value under the
region of the peak and the return map then reconstructed.

The relationship between the the intensity maxima of the
laser and the interspike intervals has conscquences for the
use of a transmitter-receiver pair of chaotic loss-modulated
Nd:YAG lasers as a system 0 transmit encoded messages
privately. By plotting the intensity-ISI return map of the
transmitter laser alone, the message of **= 1" bits, cncoded

by means of external cavity modulation, appears on surfaces
above and below the no-signal surface. Even in the presence
of moderate noise, the message can be deciphered.

As an alternative encoding scheme, we suggest encoding
the signal by modulating the pump across the intensity
maxima. This intrinsically perturbs the ISI of the transmitter
laser, as opposed to the above externally modulated encoding
scheme. The subsequent attempt to decode the embedded
message by means of intensity-ISI return maps of the trans-
mitter laser alone is unsuccessful because the signal atiractor
surfaces are merged onto the no-signal attractor surface.
However, the message can still be decoded by means of driv-
ing the receiver laser with the output of the transmitter lascr
and extracting the message from an integrated intensity dif-
ference.

In addition, quasiperiodic driving of the loss coefficient of
both the transmitter and receiver laser produced an increase
in the dimensionality of the system. This led to a thickening
of the intensity-ISI return maps with the merging of the in-
dividual surfaces corresponding to the {1,0,—1} encoded
bits. This rendered the intensity-ISI return maps ineffectual
as means to decipher the signal from the transmitter laser
alone. However, the signal could once again be extracted by
means of an integrated signal difference at a receiver laser
synchronized to the transmitter carrier wave.

Finally, the lessons leamed in this study are twofold.
First, an intensity-ISI or purely ISI retun map can be a usec-
ful tool in the study of a pair of Joss-modulated Nd:YAG
lasers because of the implicit relationship between the inten-
sity peak to the interspike intervals centered about that peak.
Second, as applied to chaotic communications, the intensity-
ISI return maps can be used to decipher the hidden message
from the transmitter carrier wave alone. Care must be taken
to intrinsically perturb the system or to increase the dimen-
sior.- v of the system (though not high enough to void syn-
chre . -ation) so that the signal is safe from undesired deci-
phering by means of mapping techniques.
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Abstract
We present unique results of detailed experimental and theoretical investigations of the
dynamical evolution of four wave mixing spectra in an optical fiber. The experimental
measuremen*s probe the evolution of sidebands generated through four wave mixing as they co-
propagate with the pumps along the fiber. We find that standard theoretical models are
inadequate to predict the experimental results and that it is necessary to modify the approach to
modeling the dynamics in two ways. The first modification is to include a pump-laser input with
multiple longitudinal modes. This reflects the fact that the pump laser fields may actually have
internal structure that is not resolved by the spectrometer used and which is very small compared
to the spacing of the central frequencies of the pump fields. Yet the evolution of the fields is
dramatically altered for the sidebands generated by nonlinear processes in the fiber medium. The
sccénd is the inclusion of phase noise added along the propagation length; this causes damping

of the sideband oscillations. These two modifications lead to excellent agreement of the

measurements with numerical predictions of the sideband evolution.




I. Introduction

The study of wave propagation in a nonlinear dispersive medium, such as an optical fiber, is of
interest in many areas of science and engineering. The past few decades have seen enormous
growth in the use of optical fibers in communications systems. With this growth, engineers and
researchers have been challenged with a wide range of physical phenomena associated with high
intensity light waves propagating in optical fibers. Specifically, some of the interesting
characteristics of silica glass, of which fibers are made, are low loss, dispersion, and especially
nonlinearity. Since optical fibers have a relatively small cross section, a comparatively small
amount of power is required to generate high intensities; thus, many nonlinear optical processes

are easily observed in the medium [1].

Some of the earliest work in nonlinear fiber optics consisted of both experimental and theoretical
investigations of such effects as stimulated Brillouin and Raman scattering [2]. This work
stimulated the expansion of research to other nonlinear phenomena, such as four-wave-mixing
(3], optically induced birefringence [4], self-phase modu!ation [5], and cross-phase modulation
[6]. Advances in communications technology came when researchers realized that the_
nonlinearity in optical fibers could be exploited. In 1973, Hasegawa suggested that optical fibers
would support soliton pulses in which the nonlinear effects balance the effects of dispersion [7].
Shortly thereafter, optical solitons were experimentally observed [8]." Technologies using
solitons are promising for high bit rate optical communication systems [9]. Nonlinear fiber
optics has found many uses beyond communications systems; for example, pulse compression

[10] and sensor devices [11].

Until recently, communications systems using optical fibers supported one communication

channel per fiber. To increase the information capacity of communications systems, engineers




have turned to wavelength division multiplexed (WDM) systems in which each communication
channel is represented by a unique wavelength. The dominant nonlinear process which limits the
information capacity of a WDM system is four-wave-mixing. The parameters that set this limit

are the power coupled in the fiber and the frequency spacing between adjacent channels.

Nonlinear fiber optics is not only relevant to telecommunications; it is also of great interest in
mathematics and physics. The equation which governs wave propagation in a single;mode
optical fiber is a nonlinear second-order partial differential equation (the nonlinear Schrodinger
equation). This particular equation has been studied extensively for its mathematical properties,
for example, its analytic solutions give rise to the possibility of soliton propagation [12]. The
nonlinear dynamics accessible in optical fibers is rich and varied and makes an excellent

experimental system for the study of many nonlinear phenomena.

In this paper, the nonlinear dynamics of four-wave-mixing processes resulting from two waves
coaropagating in an optical fiber is investigated. Multiple waves at different frequencies
copropagating in an optical fiber can interact through the nonlinear susceptibility of the fiber
medium to generate new frequencies, sidebands, through four-wave-mixing (FWM). Two pump

waves at ) and ®, input to an optical fiber can generate first order sidebands at frequencies
03=2;- 0, and Ws=2w,- ©;. Second order sidebands are found at Ws= 2@ - W4 and We=20; -
;. The number of sidebands generated is determined by the input power and frequency

separation between the pumps, e.g. higher order sidebands may easily be generated by either

increasing the pump power or decreasing the pump detuning.

We present detailed studies of the dynamical evolution of sidebands, generated from two input

pump waves at ©; and @, as they propagate along an optical fiber. Previous numerical studies




have shown that two critical parameters, the pump power and the frequency separation
(detuning) between the pump waves, determine the dynamical evolution of power in the
sidebands and the number of sidebands generated in a particular length [13]. Previous theoretical
studies have shown interesting and sometimes complex dynamical evolution of the sidebands
with length in ihe fiber [14,15). Section I reviews the nonlinear dynamical equations used to
study the evolution of FWM processes in the optical fiber. There were two sets of equations
used throughout this research to model the system; the nonlinear Schrodinger equation (NLSE)
[1] and a set of coupled amplitude equations derived from the NLSE [13). Numerical
simulations based on these models that show the sensitivity of the sideband dynamics on the
input pump power and frequency detuning are presented. These simulations motivated the initial |

choice of parameter regimes to investigate in this research.

A unique set of experimental measurements of multiple FWM processes along an optical fiber
were performed for this research. The experimental apparatus used to conduct the measurements
is presented in Gection II. The key elements of the system were two tunable dye lasers which
were pumped by a frequency doubled Nd: YAG (neodymium doped yittrium aluminum garnet)
laser, polarization maintaining optical fiber supplied by AT&T Bell Labs, a spectrometer, and a
high resolution, low noise CCD (éharge coupled device) camera supplied by Georgia 'f‘ech
Research Institute (GTRI). The GTRI CCD camera was a critical instrument in the experiments.
Standard CCD cameras would have been inadequate to detect very weak sidebands; the regime
most of the experiments probed. The experimental resuits presented here are unique in two
ways; first, the GTRI CCD camera allowed for detection of weak (<1% of the pump waves)
sidebands and second, these are the only detailed measurements tracing the dynamical evolution

of the sidebands along a fiber in existence at this time.




Section IV presents the experimental investigation of the dynamical evolution of muitiple FWM
processes in an optical fiber. Measurements tracing the power in the sidebands along a length of
50 meters of fiber are presented. These measurements were done at two input pump powers
which yield different sideband dynamics. The power in the sidebands was observed to evolve
periodically with fiber length. However, the periodic evolution appears to damp to a constant
value of power for each sideband. Furthermore, each of the sidebands evolves along the fiber
with different dynamics. Other studies in which the pump power was varied for a ﬁxéd length of
fiber are presented as well. The initial growth of the sidebands in the first § meters of fiber was
found to be fairly well predicted by the standard theoretical models. However, for longer

lengths, the inadequacy of the models to predict the experimental observations is apparent.

Section V discusses the interpretations of the experimental results. To understand the
measurements, the theoretical models are modified by including two effects previously not
considered; a pump input with multiple longitudinal modes and phase fluctuations added to the
waves as they propagate alor g the fiber length. The impact of a multimode input is examined
and found to dramatically alter the dynamical evolution of the individual sidebands when
compared with the standard theory using a single mode pump input. Weak stochastic phase
perturbations, added to the copropagating waves are also includea in the m;adeling and found to
damp the periodic evolution of the power in the sidebands. Neither the relatively straightforward
multimode input nor the ph& fluctuations which were not so obvious have ever been considered
when modeling multiple wave propagation in an optical fiber. Both effects are found critical to
un;lerstanding and predicting the dynamics of the experimentally observed sideband evolution.
This research has probed a very specific regime of a complex nonlinear system. The |
experimental research pointed to several inadequacies of the standard theoretical models to

predict the experimental resuits. Section VI summarizes the conclusions of this research.




II. Theoretical Considerations

Propagation of optical pulses in single mode optical fibers is described by the well-known

nonlinear Schrodinger equation [1]:

U BP3U
-a_Z-+ET??= iPIURU ¢))

where U is the complex electric field envelope normalized to the absolute amplitude of the field
JE » Py is the total power in the fiber, 7 is time normalized to the pulse width and measured in a
reference frame moving with the group velocity of the pulse (T = (t-z/vp)/T,), T, is the pulse
width, B? is the group velocity dispersion (GVD) and is given by the second order derivative of
B, the axial wavevector, with respect to the angular frequency @,... The nonlinearity coefficient

Y is given by the relationship,

)

where A.q is the effective core area of the fiber determined by the size of the fundamental mode,
n2' is the Kerr coefficient for the intensity dependent refractive index and Wy is the average

angular frequency of the wave envelope [1).

In order to obtain the nonlinear Schrodinger equation (eqn. (1)), several assumptions are made.

One assumption is an instantaneous nonlinear response of the medium. This is valid for pulses
longer than 100 femtoseconds since the third order susceptibility of the medium, xm. has

electronic contributions on the 1 to 10 femtosecond timescale {1]. The experimental research

used relatively long pulses ~5 ns. The slowly varying envelope approximation is also used where
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the second order derivative of the field with respect to the length is neglected. This assumes that
the change in slope of the field envelope over a distance of one wavelength is small compared
with the slope of the field envelope itself. The optical field is assumed to maintain its
polarization along the fiber, thus the scalar form of the NLSE (eqn. (1)). This is justified for the
experiments presented here, since linearly polarized light from the lasers was propagated with the
polarization aligned along one of the principal axes of a polarization preserving fiber (Section
). The axial wavevector, B(w), is approximated by a Taylor series expansion. For wavelengths
near the zero dispersion regime (A ~ 1.3 microns), where p@ approaches zero, higher order terms
from the Taylor series need to be included. The experiments in this research were performed in
the visible regime (A ~ 633 nm) thus only terms up to B‘z) were retained. The linear fiber loss is

also assumed negligible. This is justified for the wavelength regime and fiber lengths (L < 50 m)

investigated, since the loss is approximately 6 dB/km at (A ~ 633 nm) which amounts to < 1%

-loss over SO meters.

There are two wavelength regimes of interest in optical fibers; the anomalous dispersion (A > A,)
and the normal dispersion (A < A,) regimes where the zero dispersion wavelength A, can range

from 1.3um to 1.58um. The experiments presented here were performed in the normal dispersion

regime. However, the integrability of the NLSE gives rise to interesting solutions in the form of
solitons in both regimes. Soliton propagation occurs when the fiber nonlinearity balances the

effect of dispersion and the pulse propagates without dispersive broadening. In the anomalous
dispersion regime (B(z) < 0) the fundamental soliton solution of the NLSE is in the form of
hyperbolic secant pulses [1,12]. In the normal dispersion regime (Bm > 0) the fundamental

soliton solution is in the form of a hyperbolic tangent, giving rise to dark solitons or dips in a

continuous wave background [1,16]. In the context of the experiments presented, in the normal




dispersion regime with finite width pulses, a carrier pulse of finite width may support relatively
stable propagation of dark pulses for short distances [16]. These are not * proper’ dark solitons

however; the distance of stable propagation decreases with decreasing carrier width.

The split step Fourier method (SSFM), a pseudospectral technique, was used in this research
(17]. Specifically, a symmetrized form of the SSFM was used (1], and the fast Fourier transform
(FFT) routines were obtained from the IMSL mathematical libraries. An advantage of using the
NLSE in the four wave mixing problem, is that integration is reduced to using the FFT.
Modeling four wave mixing processes, for example, with a dual frequency input, the total
complex field is represented by U, the field envelope, and all frequency components are
propagated using the single NLSE. However, care must be taken under conditions where many
orders of sidebands are generated. As the number of sidebands increases, the size of the FFT

must necessarily be increased.

For long pulses or continuous wave input, assuming monochromatic waves, the coupled
amplitude equations for the pump waves and sidebands derived from the wave equation [13] are

written below, normalizing all of the complex field amplitudes to the absolute value of the total

amplitude of the pumps with average frequency @, (Which has total power P, at the input end

of the fiber)

av, P - v

— =i [tU, P +22\ U, P U, + Y d, UU.Use 3)
dz \ kej lonn

where jkmn=1234.. and k,m» n. Here I, denotes the permutations of the indices k, m

and n such that @y + @, - ©, = @, and the quantity ABypy = Py + B - Ba - B; is the axial
wavevector mismatch. The quantity dy is a degeneracy factor that is unity when k = m and 2

when k # m. The nonlinearity coefficient y is given in equation (2). Comparing the coupled




amplitude equations (eqn. 3) with the NLSE (eqn. 1), the contributions to the evolution of the
field Uj are now separated into three sets of terms. On the right side of eqn. (3), from right to

left, the contributions are due to self-phase modulation (SPM), cross-phase modulation (XPM)

and four—wave-mixing (FWM).

The linear mismatches ABym, are simplified using the approximation that the material part of the
index difference dominates the mismatch and the waveguiding contribution can be neglected.
This approximation is justified for the frequency separations in these experiments, since the v-
number characterizing the single transverse mode changes by less than 1 percent over the entire
range of frequencies considered. By using the frequency relationships between the peaks and

expanding the propagation constants B; in a Taylor series about average frequency, Wy, all the
mismatches are found to be integer multiples of the quantity Ax = QZB(Z) where Q is the

“frequency difference, or detuning, between the two pump waves and B is the group velocity

dispersicn [18). These amplitude equations can be solved numerically, and the po ver in each

frequency component obtained as a function of distanc along the fiber.

Choosing the scaled powers of the waves to be Pm= IUmlz. then in reference (18] it was shown

that the equations (3) display power conservation, as is expected. It was also shown that another

conserved quantity
C(2) = (p(2) = P, (D) + (P3(2) = (D) + (P52 = 4 (2)) @
is obtained for the multiple four wave mixing processes that occur within the fiber. It was shown

in [18] that the conservation of power and equation (4) are the only two conservation relations

that involve linear combinations of the powers in the different frequency components. This
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relation holds at any distance, z, of propagation in the nonlinear medium, and connects the
asymmetries of the pump waves and sidebands. A more generalized form of equation (4) has
been derived from the NLSE and is presented in reference [19]. Equation (4) has been verified
experimentally for relatively short fiber lengths of less than 2 meters (see ref. [19]). The
conservation of asymmetry (eqn. (4)) was used in all of the experimental measurements as a
sensitive test for other competing processes not included in the models, for example, stimulated

Raman scattering.

The initial parameter regime chosen for the expériments came from numerical simulations of the
equations presented above. The dynamics of these equations for multiple waves copropagating
in a fiber have been studied numerically for long fiber lengths [14,20]; however, experimental
work has been limited to a few meters [13,15]. As the sidebands evolve along the fiber, there is
exchange of power between the pumps and sidebands, the dynamics of which, are determined by
Athe phase mismatch between the copropagating waves. The two key experimental parameters,
for a given optical fibe- and wavelength regime, that determine the dynamics of the power
exchange are the pump detuning and the total input power. This can be seen in eqns. (3) where

all terms on the right side of the equations are multiplied by P, and the FWM terms include
oscillating terms with the argument .proponional to Q2. The FWM strength and dynamics are

B and y are same

very sensitive to the pump detuning as well as y and B”. The values used for
throughout this research, Bm =55 pszlkm and y=0.019 W'm'!, and are consistent with the

experimental regimes explored later in this paper.

To investigate the dependence of the evolution of the power in the first order sidebands (p3(z)
and p4(z)) on the pump power and detuning, the coupled amplitude equations are numerically

solved using a fourth order Runge Kutta algorithm {21]. A comparison between the power in
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the sidebands predicted by the NLSE and the coupled amplitude equations was made as a check
on the numerical simulations. Simulations based on the NLSE with a continuous wave (CW)
input and the coupled amplitude equations were performed and compared. The comparisons
yielded the same predictions for the evolution of the power in the sidebands. However,
comparison of the NLSE using a Gaussian pulse input with either the continuous wave input or
the coupled amplitude equations showed a discrepancy between the models. The power

generated in the first order sideband was found to be higher using the CW input than with the

pulse input. It was found necessary to include a scale factor in the CW models, where P>

YP, with { = 0.735. The value of { was determined by comparing predictions from the NLSE for

a Gaussian pulse input with a continuous wave input. Intuitively, as the pulse width approaches
infinity, the CW and pulse inputs should agree. However, there is no analytic form for
estimating this scale factor. Independent studies have also been performed comparing various

pulse shapes input to the NLSE with the cw input, confirming the discrepancy between the two

‘types of input.

The sensitivity of the sideband dynamics on the pumg  wer is illustrated in Figure 1. The first
order sideband evolution aldng 100 meters of fiber for a detuning of 300 GHz and different input
pump powers is plotted in Figure 1, (a) 2 W, (b) 6 W and (c) 50 W. The coupléd amplitude
equations were truncated to six waves, including up to second order sidebands. In Figure 1 (a)
the input power is low, generating relatively weak first order sidebands, and the pumps and
sidebands exchange power periodically along the fiber. Using an undepleted pump
approximation, eqns. (3) have an analytic solution which shows the power in the first order
sidebands evolves as a sinusoid as a function of length [22]. In Figure 1 (b) and (c), as the pump
input power is increased, higher order sidebands are generated and the power exchange bétween
the pumps and sidebands becomes increasingly complex. In fact, the equations when truncated

to include just a few orders of sidebands exhibit chaotic dynamics at high pump powers [13].
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However, the NLSE is integrable, and does not exhibit chaos. In the case of the coupled
amplitude equations the apparent chaos is induced by truncating the equations to include only a

few frequency components [14).

Doubling the pump detuning to Q = 600 GHz, the phase mismatch is increased by a factor of
four. As the phase mismatch increases the efficiency of power conversion from the pumps to the
sidebands decreases. The evolution of the first order sidebands with length in the fiber for a
detuning of 600 GHz is shown in Figure 2 with pump input power levels of (a) 2 W, (b) 6 W and
(c) 50 W. Comparing the evolution with a pump input of 2 W, by doubling the detuning the
maximum power in the first order sidebands is decreased by a factor of 10 (Figure 1 (a) and
Figure 2 (a)). The period of the power exchange between the sidebands and pumps has also
increased. In Figure 2(b) and (c), it takes much higher powers to generate higher order sidebands
that impact the dynamics of the first order sidebands. Thus, increasing the detuning decreases
.the efficiency of the four wave mixing power conversion. Increasing the pump power increases

the number of sidebands generated, and thus the d /namics becomes more complex.
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II. Experimental Apparatus and Technique

The entire experimental set up used to study multiple four wave mixing processes along a length
of optical fiber is shown in Figure 3. The laser system consists of two Littman type tunable dye
lasers, pumped by the second harmonic of a Q-switched frequency doubled Nd: YAG laser.

Pulses that are ~§ ns (FWHM) in length are generated. The outputs from the two dye lasers (A ~

633 nm) are amplified and then passed through the appropriate delays to ensure temporal overlap
of the pulses at the input to the optical fiber. The telescope in the path of one laser controls the
spot size and, thus, the coupling efficiency so that the relative power of the two lasers coupled
into the fiber can be adjusted to the desired value. The two apertures ensure nearly colinear
propagation of the two beams. The light is coupled into a single mode polarization maintaining
optical fiber, after passage through a polarizer and half wave plate. The polarizer at the input to
the fiber produces lifearly polarized light while the half wave plate rotates the polarization of the
light to coincide with a principal axis of the birefringent fiber. The fiber chosen for the
experimenté was developed by AT&T as an experimental fiber. The fiber is single mode at 633
nm and polarization maintaining. The AT&T fiber ac -:2ves high birefringence by deforming a

circular fiber preform so that it is rectangular in shaps, the cladding is elliptical, and the core is

circular [23). This fiber has a coré diameter of 4 um with a birefringence of 2.7x10*,

A beamsplitter cube, at the fiber output, is used to direct half of the light to an optical power
meter to monitor the power in the pulses while the other half .is input to a grating spectrometer.
A computer controlled video camera is mounted on an output port of the spectrometer with a
variable neutral density filter (VNDF) placed at the input port to regulate the amount of light
incident on the camera. Spectra for individual pulses are digitized and stored in the memory of a

microcomputer and a video monitor is used to display each spectrum.
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For the experiments presented in this paper, images of the fiber output spectra were captured
using a system based on advanced high speed, low noise, and high resolution charge coupled
device (CCD) technology. The system uses a scientific CCD device developed by MIT Lincoin
Laboratories [24]. The CCD device is backside illuminated with 420 x 420 pixels/frame. To
increase the readout rate, there is a separate frame storage region which allows one image to be

read as the next one is integrated. Each pixel has a dimension of 27 um x 27 um with a full well

depth or charge holding capacity of 100,000 electrons. Pixel nonuniformity has been measured
to be 6% peak to peak for similar backside illuminated devices made by MIT Lincoln
Laboratories [25]. The advantage of illuminating the CCD from the backside is that the quantum
efficiency (QE) is high, for this device the peak QE is 90% near 600 nm. The CCD chip

incorporates an on-chip readout amplifier which is the dominant source of noise in the device.

The camera system was built at Georgia Tech Research Institute (GTRI) for use in low light level
astronomical imaging [26]. External to the CCD chip is a 14 bit A/D and controlling electronics
for the CCD which run at a maximum rate of | Mpixel/sec. Using the full 420 x 420 array this
translates to ~5 frames/second. The external electronics incorporate low noise design techniques
such that the system noise is limited by the readout noise from the amplifier on the CCD chip.
The CCD is liquid nitrogen cooled to -50°C, reducing the dark current to 0.04 electrons per pixel
(at room temperature the dark current ~700 electrons per pixel). The minimum readout noise
from the on-chip amplifier is 7.2 electrons per pixel rms at -50°C [26].

Th; camera system is controlled using a Macintosh computer running Labview control software.
This software controls a Pulse Instruments PISS00A data generator. The PIS800A generates
signals on 16 paralle! programmable lines which control the camera. From the camera there is a
fiber optic data link which transmits up to 8.3 MBytes per second. The data is then stored in a
high speed 32 MByte ram buffer. From the buffer the data may be either stored on a high speed




15

video recorder which runs as fast as 4 MBytes per second, or, for small files it may be stored to a
hard disk which is limited by the 'O of the computer system. Programs in Labview were
developed with the capability to select a subarray at any location on the chip. For example, in
the experiments presented here, a subarray of 10 x 256 pixels near the center of the chip was
chosen. This decreases the size of required data storage and increases the maximum number of
frames per second. In these experiments the frame rate is limited to the 10 Hz repitition rate of
the Nd: YAG laser system. To achieve the slow rates the camera hardware is programmed to run
at 10 Hz and a clock signal is generated which is used to control the laser system through the
oscillator sync input. The resolution of the camera-spectrometer system is approximately 43 GHz

and is limited by the resolution of the CCD.

The data acquisition method used in this research was to collect output spectra using the GTRI
CCD. The pump lasers fluctuate from shot to shot. For statistical analysis, a total of many
spectra for each data point are collected. Typically, 400 independent spectra are captured for
each pump propagating alone in the fiber and the two pumps copropagating (FWM). The power
in the individual sidebands is measured as a fraction of the total power, normalized to unity, in
the fiber, and the total input power is determined baseu on measurements of each individual
pump propagating alone in the fiber. Quantitative measurements‘a.re then lﬁdeof the power in
the pumps and sidebands, generated by FWM. Prior to data acquistion a set of *‘dark” frames (a
set of frames with no light incident on the detector) is collected. An average ‘‘dark” frame is
found and thea subsequently used to remove the camera bias from the data frames using pixel by
pixel subtraction. The power in each frequency component is distributed symmetrically about a
central peak for that component. To calculate the power in the pumps and sidebands, we
developed software to find the locations of the peaks in the spectrum and the power in each
frequency component in two ways. The first is to take a linear cross-section along one row and

integrate the power in each frequency component. The second is to integrate the power in the full
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distribution for each component. The second method is insensitive to horizontal misalignment of
the CCD detector with respect to the spectrometer. Both methods were employed in this research
and agreed closely throughout. Quantitative values were obtained of the FWM pump and
sideband power as well as the statistics. It will be seen later that the statistical information

obtained played a crucial role in confirming the physical interpretation of the experiments.

The 14 bit dynamic range of the camera system allows for weak FWM signals to be detected. A
typical linear cross-sectio;x of a FWM spectrum is shown in Figure 4 (a) linear scale and (b)
logarithmic scale. The spectrum is plotted first on a linear scale which is comparable to the type
of spectrum that would be obtained from a standard 8 bit video camera. The uniqueness of the
GTRI CCD camera is shown in Figure 4 (b) where the spectrum is plotted on a log scale, the
highest peaks in the spectrum are approximately four orders of magmtude above the noise. This
spectrum shows many orders of sidebands, the highest orders just above the noise with a power

“less than 1% of the total pump power. The two central peaks are the pump waves at ®,, higher
frequency (blue-shifted), and ®, lower frequency (red-shifted). The first order sidebands are

located on either side of the pumps at wy=2 ;- ®; and W4= 2 @, - ;. The detection of weak

FWM sidebands at the fiber output presented here would not have been possible without the

exceptional performance of this CCD camera system.
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IV. Experiments

The measurements of the dynamical evolution of four-wave-mixing processes along a length of
single mode polarization maintaining optical fiber were performed using two different values of
the pump power, 2.1 W and 5.5 W. The frequency separation between the pumps was held

constant throughout the measurements at Q = 366 GHz. The experiments began with 50.39

‘meters of AT&T birefringent optical fiber [23]. Starting at this initial length, measurements of
the FWM spectrum at the oﬁtput of the fiber were made using the GTRI CCD camera. From
these measurements, conservation of total power and asymmetry (eqn. (4)) were tested for each
data set. To check the conservation of these quantities, the total power and asymmetry in the
single pumps propagating were calculated and compared with the power and asymmetry of the
copropagating pumps. Data sets were accepted and kept if the conservation laws were preserved.
In some cases, the presence of weak stimulated Raman scattering (SRS) was detected through the
asymmetry relation. In the experiments tracing the evolution of the four wave mixing spectra
along the fiber length no SRS was detected. After the initial measurements were made at the two
input powers (2.1 W and 5.5 W), 1 to 1.5 meters of fit  ‘vas cut and cleaved. The fiber was cut
and cleaved at the output side of the fiber, to maintain approximately constant pump coupling to
the fiber throughout the experiments. This process was repeated until the four-§vave-mixing

spectrum had been traced along the full 50.39 meters of fiber for the two input power levels.

Figure 5 and Figure 6 show three dimensional plots of the average FWM output spectrum along
the-length of single mode birefringent optical fiber. The vertical axis represents the intensity,
normalized to the peak power in one of the pumps, plotted on a logarithmic scale. The pump
frequencies are centered on $2/2, and the fiber length is increasing into the page. In Figure 5 the

input power to the fiber is 2.1 W and first order sidebands are clearly seen. Plotted on a log scale
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the evolution of the power in the sidebands appears to evolve periodically with increasing fiber
length. Figure 6 shows the evolution of the FWM spectrum for a pump input of 5.5 W. First
order sidebands are generated as well as ‘weak’ second order sidebands. The first order
sidebands appear to evolve periodically initially, and, with increasing fiber length, evolve to a

constant value.

A clearer picture of the evolution of the first order sidebands is obtained by plotting the power in
the sidebands as a function of length along the fiber. Figure 7 shows the evolution of the first
order sidebands as a function of length. The two first order sidebands are plotted separately,
where Figure 7 (a) shows the evolution of the blue sideband (blue-shifted from the pumps) and
Figure 7 (b) shows the red sideband (red- shifted from the pumps). The solid line in the figure is

generated by numerically solving the coupled amplitude equations truncated to six waves. The

parameters B® and Y were determined by finding the best fit of the numerical simulations to the

" experimental data. The values obtained were B = 55 ps’/km and y=0.019 m W', both well

within the regime expected for a central wavelength of 633 nm {1). The measured sideband
power, normalized to the total power in the fiber, is periodic with length, but it appears to be
damping to a constant value. Also, the first nﬁnifnum of the blue sideband trajectory occurs at a
shorter distance than the first minimum for the red sideband. This contradicts the predictions of
the coupled amplitude equations (ODE) and NLSE. The models predict essentially the same
evolution for each sideband. The other difference between the two sidebands is the magnitude of
the first maximum. The blue sideband has a larger maximum than the red sideband.

The apparent damping of the periodic sideband trajectory is seen more dramatically in Figure 8
which shows the evolution of the first order sideband power along the fiber for an input éowcr of
5.5 W. Again the two first order sidebands (blue and red) evolve with different trajectories.

Furthermore, they also appear to damp to a constant value at a faster rate than for the case with a
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pump input power of 2.1 W. Both sets of experiments are compared with the numerical
simulations in Figure 7 and Figure 8. The standard theoretical models do not account for either

the damping of the sideband power or the different trajectories of the blue and red sidebands.

The FWM specirum in Figure 6 shows that first order sidebands as well as weak second order
sidebands for a pump input power of 5.5 W. Figure 9 shows the evolution of the power in the
second order sidebands with propagation length. The blue and red shifted sidebands are plotted
separately and the power is normalized to the total input power. The measured sideband power
has a maximum of 0.2% of the total input. The 14 bit A/D used in the camera system limits the
resolution to 1/16384 = 0.07%. Figure 9 shows a complex evolution of the sidebands. The
sidebands are weak and just above the limits of resolution imposed by the detection system.
Comparison is made using simulations based on the nonlinear Schrodinger equation. The NLSE
is used in these simulations because it was found necessary to include higher order sidebands

(>second order) to model the dynamics.

A first set of experiments was performed using 20 meters of the AT&T birefringent fiber. In
these earlier measurements, the evolution of the sidebands was traced along the fiber using an
input power of 2.1 W and a pump detuning of 366 GHz. A direﬁt comparison between the
sideband power along the length of 20 meters of fiber with the sideband evolution along the
50.39 meters of fiber was made. The two sets of data were found to yield the same resuits.
Thus, the observations of the damping of the sideband trajectory and the different evolutions of

the individual sidebands are repeatable.

Another perspective on the evolution of the sidebands is gained through investigation of the
sideband power dependence on the pump power [13]. Measurements were made of the sideband

power as a function of pump power at a length of 50.39 meters for two different values of the
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pump detuning. Figure 10 shows the power in the first order sidebands as a function of input
power using a pump detuning Q = 366 GHz. The blue and red sidebands are plotted separately,
Figure 10 (a) and (b) respectively. The input power was varied from approximately 2 Wto 15
W, and the procedure outlined above was used for data collection. Pump depletion due to
stimulated Raman scattering (SRS) was observed for pump powers greater than 10 W. For both
the blue and red sideband, the measurement peaks around 12 W and then begins to decrease with
increasing pump power. This decrease can be attributed to significant pump depletion associated

with Raman scattering. The solid lines in Figure 10 were generated by numerically solving the
coupled amplitude equations truncated to six waves using B(z) =55 pszlkm and y=0.019 m"'wW!.

The numerical solutions yielded quite different dynamics than those observed experimentally.

The pump detuning was maintained at 366 GHz throughout the experiments probing the
evolution along the fiber length. Prior to cutting the fiber, a series of measurements of the
sideband power dependence on the pump power were performed with a detuning twice as large:

1 =722 GHz. Doubling the detuning resulted in a smaller conversion of power from the pumps

to the sidebands. Figure 11 shows the results of these measurements. Only first order sidebands
were detected for the range of pump powers explored. Consequently, essentially periodic
dynamics were predicted by the theoretical models. As in the 366 GHz detuning case, the
sideband power steadily increased with pump power until stimulated Raman scattering began to
deplete the pumps. The numerical simulations again showed oscillﬁtions in the sideband power
with increasing pump power, in marked contrast to the dynamics seen in the experiments.

To check some of the observed dynamics, a series of sideband power dependence measurements
were performed at a length of 5.52 meters with a detuning of 366 GHz. Figure 12 shows the

sideband power as a function of input power. Raman scattering was observed for pump powers
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greater than 25 W. Comparison of the experimental measurements with numerical simulations
shows very close agreement for pump powers less than 25 W. Thus, as the sidebands initially
grow in the fiber, the numerical models can accurately predict the sideband dynamics. However,
for longer fiber lengths the standard theory fails to predict the dynamical evolution of the pumps

and sidebands as the pulses propagate through the fiber.

So far, only the dynamical evolution of the power in the sidebands has been discussed. It is also
worth discussing the experimental FWM spectral envelope, which, resembles a hyperbolic secant
shape at the output of 50.39 meters of fiber. The hyperbolic secant is an ubiquitous shape in
nonlinear fiber optics and arises in the context of soliton propagation in fibers. Soliton
propagation in the form of a hyperbolic secant puise shape is found in the anomalous dispersion
regime (B(2)<0) (12,27]. However, the experiments in this research were performed in the normal
dispersion regime. In the normal dispersion regime, dark-pulse solitons of the form of a

“hyperbolic tangent are predicted and have been observed [16].

Figure 13 shows some of the experimental FWM out:*  -pectra at a fiber length of 50.39 meters,
detuning Q2 = 366 GHz, with a range of input power levels (a) 2.1 W, (b) 5.5 W, (c) 8.3 W, and
(d) 17.4 W. The solid line represents the experimental data and the dashed line is a curve fit to
the spectral envelope. The curve is fit by y(w)=Asech(Bw) where A and B are the fit parameters.
The values used to generate the plots in Figure 13 are: (a) A=3.85, §=0.36. (b) A=2.26, B=0.27,
(c) A=1.56, B=0.23, and (d) A=0.81, B=0.20. Figure 13 shows close agreement between the
hyperbolic secant shape and the experimental spectral envelope. For the lower input powers, the
peaks in the spectra are distinct. However, as the input power increases, the peaks broaden and

the spectrum begins to fill in.
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In Figure 13 (d) with an input power of 17.4 W, the pumps are depleted by Raman scattering.
Furthermore, close examination of the spectrum shows an asymmetry even though the initial

conditions on the pump waves were symmetric, i.e. P1(0)= p2(0). As the waves copropagate in

the fiber, photons from the band of frequencies generated through four wave mixing will be
down-shifted by spontaneous and stimulated Raman scattering. The Raman gain spectrum
ranges from O to tens of terahertz frequency shift from the pumps. For silica glass, maximum
Raman gain occurs at a down-shifted frequency of 13.2 THz (several orders of magnitude larger
ihan the pump detuning) [1]. However, the Raman gain is nonzero near zero frequency shift.
Thus, in Figure 13 (d), the observed asymmetry in the spectrum arises from strong stimulated

Raman scattering.

These experiments exposed several discrepancies in the comparison of experiment and theory
and illustrated the inadequacy of the standard theoretical models to predict the observed
;1ynamics over the full length of fiber investigated. The next section will present modifications to
the theoretical models, to allow a quantitative comparison of experimental observations and
numerical simulations. The key aspects of the experiments to be addressed are (1) the damping
of the periodic sideband trajectories with length and (2) the difference between the red and blue

sideband trajectories.
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V.  Theory vs. Experiment

This section develops a theoretical description which includes two effects which had not
previously been considered. We consider the effect of a multimode pump laser at the fiber input
and investigate the resulting dynamical evolution of the sidebands. By modeling one of the
pump lasers as two closely spaced longitudinal modes, the subsequent dynamical evolution of the
sidebands is altered dramatically. By introducing this asymmetry in the mode structure of the
pump input, the resultant dynamics for the blue and red sidebands begin to approach the sideband
dynamics observed in the experiments. However, the damping of the periodic trajectories seen in
the experiments is still not explained with the simple multimode structure at the input. Building
on the multimode analysis, one then introduces weak phase fluctuations to the pump waves
propagating along the fiber. The combination of both the multimode pump input and weak phase
perturbations along the fiber is found necessary to accurately predict the experimental
-obscrvations. Excellent agreement is thus finally obtained on comparing predictions based on

the stochastic multimode model with <xperiments.

V.I  Multimode Pump Input

As mentioned previously, the dye laser systems used in the experiments were designed for
narrowband operation. However, the resolution of our instrumentation limits the ability to
measure the linewidth of the lasers and distinguish single versus multiple mode operation. Thus,
either of the dye laser outputs may have consisted of several longitt;dinal modes. We examine
the impact of multimode operation on the dynamical evolution of the sidebands by introducing a
multimode pump input to the theoretical models. The sideband evolution predicted from
numerical solutions of both the NLSE and the coupled amplitude equations with a multimode

input is found to exhibit similar dynamics, when compared with the experimental observations.




To model wave propagation in the fiber using a multimode pump input, both the nonlinear
Schrodinger equation and the coupled amplitude equations discussed earlier can be used. The
NSLE requires only a modification of the input pulses. The input spectrum can be set for one,
two, three, etc., modes in each pump laser. Thus, a variety of initial pump conditions can be
investigated. Starting with the simplest case, Figure 14 shows an example (a) Gaussian input
pulse and (b) com'.sponding spectrum, to the NLSE, with two modes in the blue shifted pump
and one mode in the red shifted pump. In Figure 14 (b) the spectrum is plotted with' the pump
detuning normalized to unity and the pumps centered about zero frequency shift. The input is a
Gaussian pulse modulated by the pump detuning and the longitudinal mode spacing. The
longitudinal mode spacing (Av) were chosen to be 0.5 GHz, consistent with the expected spacing
from the experiments, and the pump detuning is 366 GHz. The initial conditions on the pumps

were chosen so that the conservation relation for the asymmetry (eqn. 2.3) is zero, i.e. p= p,.

Figure 15 shows the FWM output spectrum generated from the multimode input. The sidebands
and pumps now consist of many frequencies. To estimate the relative power in the pumps and
sidebands, the power in the band of frequencies centered around the primary frequency is
summed and then normalized to the total power in the spectrum, for example the blue pump

power, py, is calculated from summing the power in the frequency components located between

zero and one. For consistency the same notation used throughout this paper is retained to

represent the power in the pumps and sidebands, eg p3 represents the relative power in the blue

first order sideband even though now it consists of multiple frequency components.

The split step Fourier method is used to propagate the pulses along the fiber [1). Figure 15
shows a schematic representation of the FWM output spectrum after propagation through a
length of fiber with the multimode input. The evolution of the four wave mixing processes is

now more complex, not only is there mixing between the distantly spaced pump frequencies but
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there is mixing between the closely spaced longitudinal modes. A difficulty of using the NLSE to
model the multimode input is the size of the FFT which must be computed. Since the
longitudinal mode spacing is several orders of magnitude smaller than the pump detuning the
number of points necessary to represent the pulse spectrum is large >=2'5, The computation
algorithm sets limits on the number of points used to represent the spectrum and the spectrum
will necessarily be truncated. In general, the NLSE with single mode inputs yields the ability to
work with a broad spectrum consisting of many orders of sidebands, a definite advantage over

the coupled amplitude equations.

Extending the modeling of the multimode input to the coupled amplitude equations, the general
form of the equations given in eqn. (3) is used to generate a new set of coupled amplitude

equations. The frequencies in these equations now include the longitudinal mode spacing. Thus,

the wavevector mismatch will now be proportional to (Q £ Av/2)2. (Qt 3Av/2)2. etc, whereas in

the single mode model, the mismatch was proportional to Q2. The number of frequency

components necessary to model the FWM dynamics, including up to second order sidebands,
results in at least 100 terms in each equation. Using ec’  on(3), a ‘C’ program was written to
find the allowed combinations of k, mand n. The muitimode four waving mixing equations were

then stored to a file in a subroutine format to be called from the integration programs.

For simplicity, the case of two longitudinal modes in the blue pump.and one in the red pump is
considered. The blue pump was initially chosen to be multimode because the fluctuations in
ex;:erimenta! measurements of the linewidth were larger than those in the red pump. The single
mode input standard model consists of 6 complex coupled field equations which includes the
pumps, first order sidebands, and second order sidebands. Terms up to second order sidebands

were included since they were observed in the experiments for a pump input of 5.5 W. With the
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exhibited by the blue and red sidebands with this model are significantly different. Within the
first 10 meters, the model follows the evolution quité well, and yet the damping observed in the
experimental measurements with increasing length makes comparison difficult. Overall, the
multimode model yields promising results for predicting the dynamical evolution of the
sidebands. The modeling of the damping of the sideband trajectories will be discussed in the

next section.

As another comparison of the multimode input model with experiment, Figure 18 shows the
evolution of the second order sidebands with propagation distance. Terms including up to at
least third order sidebands must be included in the model to properly predict the dynamics of the
second order sidebands. The coupled amplitude equations including only up to second order
were found inadequate. Thus, the nonlinear Schrodinger equation was used to easily include
higher order sidebands. Comparison of the second order sideband and predictions based on the
'NLSE with a multimode input shows close agreement. The second order sidebands are weak and
yet for fiber lengths less than 20 meters the simulations follow the experimental measurem-nts
closely. However, beyond 20 meters the blue second order sideband (Figure 18 (a)) appears to

be damping to a constant value.

As mentioned earlier, the model can be extended to include various combinations of pump
inputs, for example, three modes in one of the pumps and two or one in the other pump. No
significant dxﬂ'erence was found in the first order sideband evolution for the different
combinations of asymmetric muitimode input, for the parameter regimes investigated; Ly, =
50.4 m, P < 6W, Q = 366 GHz, and Av = 0.5 GHz. As the fiber length increases beyond 50.4
meters, differences in the trajectories arise between the various asymmetric combinations for the
input. Referring to Figure 15, the spectrum broadens around the central frequency components
due to FWM between the longitudinal modes. The longitudinal mode spacing used in these
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simulations is small compared to the pump detuning. Furthermore, since the mode spacing is
small, the FWM processes between adjacent modes will evolve with a period much longer than
the fiber lengths considered in this research. Subtle differences in the sideband evolution will
arise for different mode structures as the fiber length increases due to the different dynamics
between adjacent modes. Only the simplest case of multimode input was considered for

comparison with these experiments.

V.II  Stochastic Phase Fluctuations

The previous theoretical analyses presented have been limited to deterministic models, We now
turn to modeling of stochastic processes along the fiber length as well as including stochastic
initial conditions on the pump inputs. The latter are included in the modeling to closely imitate
the conditions present in the experiments. The former examines the impact on the dynamical
evolution of the four wave mixing processes when weak fluctuations are added to the phase of
-each of the waves copropagating along the fiber. These phase fluctuations are found to damp the
sideband periodic trajectories to a constant value. Comparison with the experimental

observations is made and excellent agreement is found.

Consider a physical process which acts to perturb the phase of the waves propagating along the
fiber. The physics of this phase noise could arise from a number of sources, such as; fiber
medium inhomogeneities [29,30], Brillouin scattering, or Raman scattering [1]. In the
experiments, there was no indication that these sources were pn:seni. However, the existence of
these pm could have been lost in the background noise of the instrumentation.
Identification of the physical process generating the noise through both experiments and
modeling is a promising area for future research. A strong candidate for the source of phase
noise is stimulated Raman scattering that builds up from a spontaneous noise background.

Recalling the experiments probing the sideband power dependence on the pump input power, for
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a 50 meter length of fiber significant Raman scattering was detected for pump inputs greater than
10 W. Thus, it is highly likely that very weak (< 4 orders of magnitude down from the pumps)

Raman scattering was present in measurements.

There are two theoretical models which may serve as the core set of equations to model the
nonlinear wave propagation along with stochastic processes in the fiber. The multimode coupled
amplitude equations, developed previously, were used for the stochastic modeling in this
research. A model incorporating the phase noise into the nonlinear Schrodinger equation is
desirable as weil. However, algorithms to properly include the necessary stochastic terms in the
NLSE are not available at this time. Thus, the remainder of the research will use the coupled
amplitude equations. Integration of the amplitude equations proceeded as follows. After the
initial conditions on the input were set, the multiple waves were propagated in the fiber using a
_founh order Runge-Kutta integration {21] with a step size Az (typically 10° meters). After each
integration step, the complex field amplitudes were converted to intensity and phase. The phase,

9;, of each wave at frequency, wy, was modified according to:

0,(z+A4z)=¢,(2)+ 59, (5)

where the phase fluctuations are represented by 8¢;. The intensity and phase were then
converted back to the complex field amplitudes. The field was then propagated another step Az

and the process repeated for each integration step.

Since the exact source generating the noise is not known, the.phase fluctuations are taken to be
delta correlated along the fiber and are considered to be independent sources for each wave. The
Box-Muller algorithm was used to generate Gaussian deviates from computer generated uniform

deviates [21,31]. The fluctuations are given by:

og, = ,/—20,‘& In(r;) cos(2xr,) (6)
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and,

o¢,., =20, Azn(r)sin(27r,) M
where r| and r; are uniformly distributed random numbers on the interval (0,1) and c,j is the

standard deviation of the phase fluctuations for a given frequency component. For simplicity in
the numerical computations, the phase fluctuations were added to only the frequency components
associated with the two pump waves. However, computations were also performed adding phase
noise to all components; there was no detectable difference in the resulting sideband dynamics
for the parameters investigated. This is reasonable in the regime of primary interest, since for
pump powers less than 6 W, the pump intensities are much larger than the sidebands and thus

make the strongest contribution to the FWM dynamics. Typically, the noise strengths g;, were

chosen to be of the same order of magnitude for each pump.

V.III Stochastic Initial Conditions

Previous studies showed that fluctuations in the initial conditions of the pumps could have a
significant impact on the dynamics of the FWM processes in the fiber [13,18]. To model the
initial conditions of the experiments, measuremehts of  oump fluctuations were included in
the input to the integration of the equations. To measure the pump fluctuations, each pump was
propagated alone in the fiber for each fiber length and pump power. The mean intensity,
normalized to unity, and standard deviation were calculated from the output spectra. The
intensity in the pumps was found to be Gaussian distributed. anure' 19 shows the measured
standard deviation in the normalized pump power as a function of length along the fiber. The
blue and red pump standard deviations are plotted separately. The blue laser has a higher mean
intensity fluctuation than the red, this is probably associated with multiple longitudinal modes in

the blue pump. The experimental measurements over the full length of optical fiber were
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performed over a long period of time (approximately one year). As can be seen from Figure 19,

the pump intensity standard deviation varied with time.

The numerical simulations were performed with fluctuations in the input pump intensity as well
as fluctuations in the detuning. The measured frequency fluctuations had a magnitude of less
than 1 GHz, several orders of magnitude smaller than the pump detuning of 366 GHz. Including
the frequency fluctuations in the simulations was found to have no measurable impaét on the
resulting dynamical evolution of the sidebands. However, the pump power fluctuations were

large (~10%) and could not be neglected. The pump input was of the form:
U,(0)=Jp,(0)e™™ ®)

where p; is the intensity and r; is a uniformly distributed random number in the interval o,1),
which selects a nonzero initial phase. For completeness 1j is included here. However,
randomizing the initial phase had no measurable impact on the resulting evolution of the power
in the waves. The pump intensity input to equation (8) for each component in the dual mode
pump was set according to,

P =4p,, +idp . ©)

where k represents each mode and for the single mode pump,

A 0) = p,, +dp, (10)

where p,, is typically set to unity for both pumps and 8p are the fluctuations in the pumps and
are generated using the Box-Muller algorithm [21]. The fluctuations are generated using the
medsured values of the standard deviation in the pump intensities (see Figure 19) and, are given

by, for the blue pump,

3p, =\/- 20; In(f;) cos(2n;) (11)

and for the red pump,
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8p, = ,/— 20; In(r,) sin(2n,) (12)

Computations with the multimode model (for the dual mode pump) used the same noise strength
for each longitudinal mode. The next section will discuss the specific values used in the

numerical simulations and compare with the experiments.

V.IV Numerical Simulations

The numerical simulations were performed using the multimode coupled amplitude equations
along with the stochastic conditions discussed above. A complication arose when adding the
phase fluctuations to the waves which resulted in a “noise-induced” drift [32]. This is a feature
of multiplicative noise sources in which the noise added causes the sidebands to grow with
propagation. Even though the noise is additive to the phase, the equations are cubic in the
complex field and, thus, the phase noise is multiplicative when coupled back into the field
—equations. Including phase noise in the FWM calculations resulted in trajectories for the
sideband power with length which were damped periodic trajectories with an increasing slo;)e.

To remove this artifact of the computations, a linear - ‘s term, -aUj, was added to each of the
complex field equations. The loss coefficient, @, was then set by finding the value which
removed this increasing slope. In ihcory, the mathematical form of & can be derived from the

equations and is a function of the noise strength [32). However, the size of the system of coupled
propagation equations made the technique for estimation intractable, even for the simplest

approximate form of the equations.

The strength of the phase noise used in all of the following simulations was determined by fitting

the simulations to the experimental data. The values found to give the best fits were Oy =

0.0067 m"' and Oy, = 0.005 m" and @ =0.0046 m. For comparison with the experiments
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tracing the evolution of the sidebands along the fiber, the simulations were the re#ult of two
calculations, one from 0 to 20 meters and the other from 0 to 50.4 meters. The calculation from
0 to 20 meters replaces the first 20 meters of the O to 50.4 meter simulations. This was necessary
since the initial conditions on the pump fluctuations were larger (due to the laser adjustments for
the measurements, which took several months) for lengths less than 20 meters (see Figure 19).

The fluctuations in the pump intensities were set at Gp,;=0.20 (blue) and Op,=0.11 (red) to

generate the curves from 0 to 20 meters and 0, = 0.12 and 6,,,= 0.05 to generate the curves from

20 to 50.4 meters. The other parameters were set at Bm =55 pszlkm. ¥=0.019W'm!, Q=366
GHz, 8v = 0.5 GHz. The numerical simulations compute both an average and standard deviation
from 50 trajectories. Simulations were done for 100 trajectories and it was determined that

accurate statistics (the standard deviation was less than 5%) were obtained for as few as 50

trajectories. Thus, to reduce computation time the statistics are calculated from SO runs.

Figure 20 (3) and Figure 21 (a) show the blue and red sideband trajectc ries, respectively, for an
input power of 2.1 W. The experimental data are plotted with the numerical solution of the
multimode coupled amplitude equations including both phase noise at each integration step and
fluctuating the pump inputs. The multimode model with the inclusion of stochastic initial
conditions and, most importantly, phase fluctuations along the fiber length, results in predictions
which are very close to the experimental observations of the dynamical evolution of the
sidebands. Figure 20 (b) and Figure 21 (b) show the measured standard deviation in the sideband
power along the fiber length for the blue and red sidebands, respectively. The standard deviation
was also calculated from the numerical simulations. Excellent agreement is found between the
model and experimental measurements. Throughout the course of this research, many stochastic
models have been investigated and this model is the only one found that reproduces the evolution

of both the average power and fluctuations in the sidebands.
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For an input power of 5.5 W, Figure 22 and Figure 23 show comparison between the numerical
simulations and experimental data for the blue and red sidebands, respectively. The red sideband
trajectories in Figure 23 show excellent agreement between the numerical model and experiment.
The power in the red sideband from numerical solutions is periodic and appears to be damping at
the appropriate rate. However, the blue sideband power trajectory shown in Figure 22 (a) does
not reproduce the experimental measurements as closely. The numerical simulatioqs at this
pump power result in a blue sideband power evolution which does not damp as quickly as the
experimental observations. However, the fluctuations measured in the experiments are fairly
well predicted by the numerical simulations as shown in Figure 22 (b) and Figure 23 (b) for both
the blue and red sidebands, respectively. The discrepancy in the damping seen between the
experiment and model of the blue sideband power evolution could arise from several effects.
The strength of the phase noise was the same for both the 2 W and 5.5 W calculations. Many
simulations have been performed to optimize the values used for the phase noise strengths. The
values used in these simulations were optimized in the sense they gave the best fit to the
experimental data. A be:ter approach would be, to identify the physical phenomena yenerating

the phase fluctuations and with this knowledge, the mac-itudes of Oy, and G, could be estimated

from the physics. Another benefit of identifying the physics of the phase noise, the noise could

be properly included in a model based on the nonlinear Schrodinger equation.

As a confirmation of the multimode model with phase noise, numerical simulations were
performed examining the sideband power dependence on the .input power at a length of 50.4
meters. Figure 24 and Figure 25 show the power in the sidebands as a function of input power

- for a pump detuning of 366 GHz and 722 GHz, respectively. The experimental measurements of
the sideband powers are represented by closed circles in Figure 24 (a) and Figure 25 (a), blue
sideband, and closed squares in Figure 24 (b) and Figure 25 (b) red sideband. The results of

numerical simulations are represented by the open circles in Figure 24 (a) and Figure 25 (a) and
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open squares in Figure 24 (b) and Figure 25 (b). The numerical simulations follow the general
trend seen in the experiments. A large deviation occurs for pump powers >10 W where the
pumps begin to be depleted by stimulated Raman scattering. Below 10 W, the experimental
measurements of the red sidebands tend to be higher than the simulations, this increase arises
from weak scattering of the blue photons to the red. With the smaller detuning (366 GHz), care
must be taken to account for all orders of sidebands and for powers greater than 6 W probably
third and fourth order sidebands are generated. However, with this model, including only up to
second order sidebands, yields predictions in close agreement with experimental measurements
especially when compared with the predictions based on the deterministic single mode input

coupled amplitude equations.

We have presented a new approach to modeling the dynamical evolution of four wave mixing
processes along an optical fiber. This modeling was motivated by the standard theoretical
—models inability to predict the results of experimental measurements presented in Section II.
The two critical features of the model were a multimode pump input along with phase
fluctuations added along the fiber length. The multimode pump input was found to alter the
resulting sideband dynamics significantly. Due to an asymmetry introduced in the input, the blue
and red sidebands evolved with different trajectories along the ﬁber. Furti)errnore, by adding
weak phase fluctuations to the copropagating waves, the periodic sideband trajectories were
found to damp out. Figure 20 through Figure 25 show comparisons between the experimental
measurements of the sideband dynamics and the stochastic multimode model. The experimental
observations brought to light several questions regarding the dynamics of the four wave mixing

processes in the fiber.
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V1. Conclusions

The dynamical evolution of four wave mixing (FWM) processes in an optical fiber has been
investigated. This research consisted of experimental, theoretical, and numerical computations.
The focus of this work was to experimentally trace the evolution of the sidebands, generated
through FWM, along a length of optical fiber. Previous theoretical work suggested that, in
certain parameter regimes, the sidebands exchange energy with the pumps periodically (13,14].
Specifically, in the undepleted pump regime [28], the sideband power evolves as a sinusoid with
fiber length. Previous experiments had probed the dynamics for short fiber lengths (< 2 m) [13],

however, the periodic evolution had never been directly verified.

The FWM spectral evolution along 50 meters of fiber for two input pump power regimes was
investigated. The experimental work consisted of measuring the FWM mixing spectrum output
from an optical fiber at different lengths in the fiber. Specifically, a low noise, high resolution
CCD camera made at Georgia Tech Research Institite, was used [26] to detect weak (<1% of the
power in the pumps) sidebands. With this resolution, = :asurements of the power in the first
order sidebands for input pump powers (2.1 W and 5.2 /) were made using a pump detuning of
366 GHz. In the case of a pump input of 2.1 W, the sideband power evolution is expected to
follow a sinusoid along the length of the fiber. Experiments showed that the power in the
sideband evolved periodically, but that the evolution followed a damped sinusoid. The
experiments also found that the two first order sidebands (blue and red shifted from the two
pumps) had different evolutions along the fiber. Neither the damping nor the different evolutions
were predicted by theory. Using a pump input power of 5.5 W the evolution of both first and
second order sidebands was also measured. For a pump input of 5.5 W the damping in the i‘ust

order sidebands appeared to occur faster than in the 2.1 W case.
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Experiments probing the dependence of the sideband power on the input power for two different
values of the detuning (366 GHz and 722 GHz) were also performed at the output of 50 meters of |
fiber. With a detuning of 366 GHz, the sideband power for pump inputs ranging from 2 W to 17
W was measured. Comparison of theoretical predictions with the measurements showed a large
discrepancy both quantitatively and qualitatively. The measurements of the sideband power as a
function of pump input power with 722 GHz detuning showed the same discrepancies with the
theoretical models as the 366 GHz detuning case. Another set of measurements w?re performed
at a length of 5 meters with a pump detuning of 366 GHz. Comparisons of the measured
sideband powers with theoretical predictions, for this case, showed excellent agreement up to a
pump input power of 25 W. For higher powers, the deviation between experiment and theory
was due to other competing processes (stimulated Raman scattering) not accounted for in the
theoretical model. The results of the measurements show that the initial evolution of the FWM
spectrum in the fiber is modeled well by the standard theory. However, beyond the initial growth

of the spectrum the models do not predict, even qualitatively, the experimental observations.

Three dimensional plots of the evolution of four wave mixing spectrum in the fiber, indicate that
the spectrum was evolving to a stable profile. Since, in the anomalous dispersion regime, soliton
propagation in the form of a hyperbolic secant shape is known to be supported in an optical fiber
(12], the envelope shape of the experimental FWM spectrum was investigated. It was found that
at the output of 50 meters of fiber the spectral envelope could be fit by a hyperbolic secant shape.
However, these experiments were performed in‘ the normal dispersion regime, where the
fundamental soliton shape is predicted to be a hyperbolic tangent. Furthermore, in the normal
dispersion regime, true solitons are essentially dips in a continuous wave carrier. Theoretical and
experimental research indicates that soliton-like pulses can be supported on carrier pulses‘ where
the length of stable propagation in the fiber is determined by the length of the carrier [16].

Further studies need to be done to determine if the FWM processes in the fiber evolved to a train
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of stable soliton dips in the long puise background for the fiber lengths investigated in the

experiments [33].

The experimental results pointed to the need to modify the approach to the theoretical modeling
of the four wave mixing processes. The experimental measurements tracing the sideband
evolution along the fiber length, showed that the different first order sidebands evolved with
different dynamics. This observation was not accounted for in the standard theoretical models.
By imposing an asymmetry on the spectral structure of the pump inputs, the sidebands were
found to follow different dynamical evolutions. Specifically, one of the pump inputs was
modeled to consist of two closely spaced longitudinal modes. It is worth emphasizing that the
inter-mode spacing is very small compared to the difference in wavelength of the two pump
lasers, and is not resolvable with the spectrometer system used and had to be resolved with a
higher resolution wavemeter. This multimode input was found to alter the sideband dynamics

dramatically.

The experimental measurements of the sideband power 'vith length along the fiber indicated that
there was damping of the periodic evolution of sideba.. .. power with increasing fiber length.
Again, this was not accounted for by the standard theory. One interpretation that give$ insight to
the damping of the sidebands is that the exchange of power between the pumps and sidebands
copropagating in the fiber can be thought of as a coherent process. The experimental
measurements showed the damping of sideband power, indicating that there was a mechanism
along the fiber acting to remove the coherence of the power exchange between the pumps and
sidebands. This mechanism was modeled by adding weak phase fluctuations to the waves as
they propagated along the fiber, using the continuous wave model (coupled amplitude quﬁons).
These phase fluctuations were found to account for the damping of the sideband power evolution

along the fiber. However, the physical source of these phase fluctuations has yet to be
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determined and is an area for future research. Numerical simulations using the new approach,
including a multimode input and phase fluctuations along the fiber length, were performed for
the parameters of the experiments, and excellent quantitative and qualitative agreement was

found.
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Figure Captions

Figure 1: Dynamical evolution of first order sidebands as a function of fiber length; Q = 300

GHz, and input pump powers of (a) 2 W, (b) 6 W, and (c) 50 W. Note the different scales of each

vertical axis.

Figure 2: Dynamical evolution of first order sidebands as a function of fiber length; Q = 600

GHz, and input pump powers of (a) 2 W, (b) 6 W, and (c) 50 W. Note the different scales of each

vertical axis.
Figure 3: Experimental setup used to investigate four-wave-mixing in an optical fiber.

Figure 4: Experimental FWM output spectrum (a) plotted on a linear scale and (b) plotted on a

logarithmic scale. }

Figure 5: Evolution of the FWM spectrum along the fiber from experiments, P=2.1 W, Q = 366

GHz.

Figure 6: Evolution of the FWM spectrum along the fi' - from experiments, P=5.5 W, Q = 366

GHz.

Figure 7: Comparison between the experimental measurements (symbols) and the standard

theoretical models (solid line), of the sideband evolution as a function of fiber length; P=2.1 W,

Q = 366 GHz. Dynamical evolution of the (a) blue shifted sideband and (b) red-shifted sideband.

Figure 8: Comparison between the experimental measurements (symbols) and the standard

theoretical models (solid line), of the sideband evolution as a function of fiber length; P=55W,

Q = 366 GHz. Dynamical evolution of the (a) blue shifted sideband and (b) red-shifted sideband.
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Figure 9: Comparison between the experimental measurements (symbols) and the standard

theoretical models (solid line), of the second order sideband evolution as a function of fiber
length; P=5.5 W, Q = 366 GHz. Dynamical evolution of the (a) blue shifted sideband and (b)

red-shifted sideband.

Figure 10: Comparison between the experimental measurements (symbols) and the standard
theoretical models (solid line), of the sideband power versus pump input power; L=50.39 m, Q =

366 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband.

Figure 11: Comparison between the experimental measurements (symbols) and the standard
theoretical models (solid line), of the sideband power versus pump input power; L=50.39 m, Q =

722 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband.

Figure 12: Comparison between the experimental measurements (symbols) and the standard
‘theoretical models (solid line), of the sideband power with pump input power; L=5.52 m, Q =

366 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband.

Figure 13: Experimental FWM output spectrum (solid line) and hyperbolic secant envelope fit
(dashed line) for pump inpht powers of: (a) P=2.1 W. (b) 5.5 W,(c)8.3 W,and (d) 174 W.

Fiber length L=50.39 m and detuning Q =366 GHz.

Figure 14: Multimode pulse input to the NLSE, (a) input pulse in the time domain and (b) input

spectrum.

Figure 15: Multimode output spectrum from the NLSE after propagation through several

meters.

Figure 16: Comparison between the experimental measurements (symbols) and the muitimode

model (solid line), of the sideband evolution as a function of fiber length; P=2.1 W, Q = 366




42

GHz, Av=0.5 GHz, =0.019W 'm"', and B® = 55ps¥/km. Dynamical evolution of the (a) blue

shifted sideband and (b) red-shifted sideband.

Figure 17: Comparison between the experimental measurements (symbols) and the multimode
model (solid line), of the sideband evolution as a function of fiber length; P=5.5 W, Q = 366
GHz, Av=0.5 GHz, y=0.019W 'm"!, and B® = 55ps¥/km. Dynamical evolution of the (a) blue

shifted sideband and (b) red-shifted sideband.

Figure 18: Comparison between the experimental measurements (symbols) and the multimode

model (solid line), of the second order sideband evolution as a function of ﬁber length; P=5.5 W,
€2 = 366 GHz, Av=0.5 GHz, y=0.019W 'm"', and B® = 55ps¥km. Dynamical evolution of the

(@) blue shifted sideband and (b) red-shifted sideband.

Figure 19: Measured input pump power standard deviation as a function of fiber length, (closed

éircles) blue shifted pump and (open squares) red shifted pump.

Figure 20: Comparison between the experimental measurements (symbols) and the stochastic

multimode model (solid line), of the blue sideband ev- _ion as a function of fiber length; P=2.1
W, Q =366 GHz, Av=0.5 GHz, y=0.019W 'm!, and B = 55ps’km. Dynamical evolution of

(a) the power in the blue shifted sideband and (b) the measured fluctuations.

Figure 21: Comparison between the experimental measurements (symbols) and the stochastic
multimode model (solid line), of the red sideband evolution as a function of fiber length; P=2.1

W, Q =366 GHz, Av=0.5 GHz, 7=0.019W 'm"', and B®’ = §5ps’/km. Dynamical evolution of

(a) the power in the red shifted sideband and (b) the measured fluctuations.

Figure 22: Comparison between the experimental measurements (symbols) and the stochastic
muitimode model (solid line), of the blue sideband evolution as a function of fiber length; P=5.5
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W. Q= 366 GHz, Av=0.5 GHz, =0.019W"'m"!, and B? = 55ps?/km. Dynamical evolution of

(a) the power in the blue shifted sideband and (b) the measured fluctuations.

Figure 23: Comparison between the experimental measurements (symbols) and the stochastic
multimode model (solid line), of the red sideband evolution as a function of fiber length; P=5.5
W, Q = 366 GHz, Av=0.5 GHz, Y=0.019W 'm", and ¥ = 55ps*/km. Dynamical evolution of

(a) the power in the red shifted sideband and (b) the measured fluctuations.

Figure 24: Comparison between the experimental measurements (closed symbols) and the
stochastic multimode model (open symbols), of the sideband power versus pump input power;
L=50.39 m, Q = 366 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband.

Figure 25: Comparison between the experimental measurements (closed symbols) and the
stochastic multimode model (open symbols), of the sideband power versus pump input power;

L=50.39 m, Q = 722 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband.
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Summary

We have investigated the stability properties of two and three element laser arrays that
are nearest neighbor coupled. A novel form of generalized synchronization has been
discovered, where the outer elements of the three laser linear array are synchronized
identically, but the middle one is not synchronized with the outer ones. Experiments
on fiber ring lasers have lead to a model that employs delay equations coupled toa
differential equation to describe the fast (nanosecond) dynamics of the polarized light
output from these lasers. Four wave mixing of light beams at detuned frequencies has
been studied both experimentally and theoretically and a uniques set of measurments
has been analyzed. Phase fluctuations of the light play an important role in the
propagation of the sidebands through the fiber. The first experiments on optical
communication with chaotic fiber lasers have been performed.




